
Additional Parallelization of Existing MPI
Programs Using SAPFOR

September 14, 2021 | Kaliningrad

Nikita Kataev and Alexander Kolganov
Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

Parallel Programming Tools

2 | 16 dvm-system.org

Our approach to the exploitation of intra-node parallelism in existing MPI programs (C and Fortran):
 a directive-based programming model (DVMH),
 automation tools (SAPFOR),
 user participation.

Automatic parallelizing compilers return a fully
parallelized source code (maybe not optimal) for a
given sequential one.

Directive-based models simplify programming and
increase software maintainability while still providing
high performance.

Low-level models, give programmers fine-grained
control over the program execution and allow them
to gain the best performance.

DVMH

Directive-based programming model which aims to create parallel
programs for heterogeneous computational clusters (GPU NVidia,
Intel Xeon Phi, multicore CPUs).

The model includes two programming languages which are the
extensions of standard C and Fortran languages by parallelism
specifications: CDVMH and Fortran-DVMH

The parallel program is developed in terms of a sequential one.

CUDA

MPI

OpenMP

DVMH Programming Model

3 | 16 dvm-system.org

Development of high-level parallel programming languages.
Directive-based programming models.

program jacoby_dvmh

 parameter (l=4096, itmax=100)

 real a(l,l), b(l,l), eps

!DVM$ DISTRIBUTE(BLOCK, BLOCK) :: A

!DVM$ ALIGN B(I,J) WITH A(I,J)

 ...

 do it = 1, itmax

 eps = 0.

!DVM$ REGION

!DVM$ PARALLEL (J,I) ON A(I, J), REDUCTION(MAX(EPS))

 do j = 2, l-1

 do i = 2, l-1

 eps = max(eps, abs(B(i, j) - A(i, j)))

 a(i, j) = b(i, j)

 enddo

 enddo

!DVM$ PARALLEL (J,I) ON B(I, J), SHADOW_RENEW(A)

 do j = 2, l-1

 do i = 2, l-1

 b(i, j) = (a(i-1, j) + a(i, j-1) + a(i+1, j) + a(i, j+1)) / 4

 enddo

 enddo

!DVM$ END REGION

 enddo

!DVM$ GET_ACTUAL(B)

 print *, b

end

Fortran-DVMH Program with Data Distribution

 data distribution,

 computation distribution,

 compute regions and
specifications of CPU-to-
GPU data transfer,

 variable properties and
remote data.

Main directives:

4 | 16 dvm-system.org

program jacoby_dvmh

 parameter (l=4096, itmax=100)

 real a(l,l), b(l,l), eps

 ...

 do it = 1, itmax

 eps = 0.

!DVM$ REGION

!DVM$ PARALLEL (J,I), REDUCTION(MAX(EPS)), TIE(A(I,J), B(I, J))

 do j = 2, l-1

 do i = 2, l-1

 eps = max(eps, abs(B(i, j) - A(i, j)))

 a(i, j) = b(i, j)

 enddo

 enddo

!DVM$ PARALLEL (J,I), TIE(A(I,J), B(I, J))

 do j = 2, l-1

 do i = 2, l-1

 b(i, j) = (a(i-1, j) + a(i, j-1) + a(i+1, j) + a(i, j+1)) / 4

 enddo

 enddo

!DVM$ END REGION

 enddo

!DVM$ GET_ACTUAL(B)

 print *, b

end

Fortran-DVMH Program without Data Distribution

 computation distribution,

 compute regions and
specifications of CPU-to-
GPU data transfer,

 variable properties and
array access patterns.

Main directives:

5 | 16 dvm-system.org

The DVMH runtime system does not participate in any inter-processor interaction, and it
works locally in each MPI process.

The tie specification is used to set correspondence between loops in the parallel loop nest
and dimensions of the arrays.

The capabilities of the DVM system allows us:

 to use parallelism on shared memory with using CPU cores (OpenMP threads) or to use graphics
accelerators,

 to perform the automatic data transformation on GPUs, and to use simplified management of
data movements between CPU and GPUs memories,

 to select optimization parameters of DVMH runtime system,

 to use tools for debugging and performance analyzing of parallel programs.

DVMH-based Parallelization of MPI Programs

6 | 16 dvm-system.org

SAPFOR (System For Automate Parallelization) is a software development suit that is
focused on cost reduction of manual program parallelization.

The main goals of SAPFOR development:

 Exploration of sequential programs (program analysis and profiling).

 Automatic parallelization (according to DVMH or OpenMP models) of a well-formed
program for which a programmer maximizes algorithm-level parallelism and asserts
high-level properties (implicit parallel programming methodology).

 Semi-automatic program transformation to obtain a well-formed sequential version
of the original program.

Goals of SAPFOR

7 | 16 dvm-system.org

С/С++/Fortran
+

High-level
Assertions The runtime library of

dynamic analyzer

Transformation
+

Analysis

.json Execution .exe

Instrumentation

Architecture of SAPFOR

 A graphical user interface is used to manage
parallelization.

 Build automation tools, such as Make, can be also
used to run program analysis.

8 | 16 dvm-system.org

Frontend

Intermediate
Representation

Transformation + insertion of DVMH/OpenMP directives

Automatic Parallelization Using DVMH Model

9 | 16 dvm-system.org

Parallelization for compute devices with shared memory (multi-core CPU or accelerator) requires that
three kinds of annotations be inserted into the source code:

 specifications of the loops which can be executed in parallel, as well as specifications of private and
reduction variables, and a pattern of array accesses,

 specification of the compute regions which can be executed on the accelerators, each region may enclose
one or more parallel loops,

 high-level specifications of data transfer between a memory of CPU and a memory of accelerator
(actualization directives).

For each loop the following constraints are examined:

 safety of control flow (the absence of I/O operations, side effects, etc.),
 safety of memory accesses (absence of loop-carried data dependencies and captured pointers),
 the direction of data usage (input, output, and local data),
 canonical loop form according to the OpenMP standard,
 the ability to express properties of memory locations with DVMH directives,
 the ability to collapse iteration spaces of nested loops into one larger iteration space.

Analysis of the NAS Parallel Benchmarks 3.3.1

10 | 16 dvm-system.org

Automatic IR-level inline expansion:
 determine function calls that degrade analysis and schedule them to inline,
 do not affect the source code.

Extended analysis of privatizable, reduction and induction scalars which participate in address arithmetic:

 local IR-level transformation to break the explicit relation between scalars and MPI functions,

 LLVM-based analysis of memory references promoted to be register references.

Pre-specified data usage direction for the standard procedures: intrinsic Fortran procedures, functions
from the C standard library and MPI procedures.

Dynamic analysis to reveal privatizable arrays and manual specification of analysis options to assume that
subscript expression is in bounds value and to prevent math functions to indicate errors by setting errno.

 double sum = 0.0E0;

 for (int j = 1; j <= lastcol - firstcol + 1; ++j)

 sum = sum + r[j - 1] * r[j - 1];

MPI_Send(&sum, 1, dp_type, reduce_exch_proc[i - 1],

 i, MPI_COMM_WORLD);

double sum = 0.0E0;

double sum_promoted = sum;

for (j = 1; j <= lastcol - firstcol + 1; ++j)

 sum_promoted = sum_promoted + r[j - 1] * r[j - 1];

sum = sum_promoted;

MPI_Send(&sum, 1, dp_type, reduce_exch_proc[i - 1],

 i, MPI_COMM_WORLD);

Manual Transformation of the EP and BT Benchmarks

11 | 16 dvm-system.org

Replacement of a reduction array of the constant size with scalar variables (EP):
switch (l) {

 case 0: q0 = q0 + 1.0; break;

 case 1: q1 = q1 + 1.0; break;

 ...

}

 q[l] = q[l] + 1.0;

Elimination of a large privatizable array to reduce memory usage on GPU (EP, BT):

for (i = 0; i < NK; i++) {

 ...

 x[i] = r46 * (*x4);

}

for (i = 0; i < NK; i++) {

 x1 = 2.0 * x[2 * i] - 1.0;

 x2 = 2.0 * x[2 * i + 1] - 1.0;

 ...

}

for (i = 0; i < NK; i++) {

 double x_2i, x_2i1;

 ...

 x_2i = r46 * (*x4);

 ...

 x_2i1 = r46 * (*x4);

 x1 = 2.0 * x_2i - 1.0;

 x2 = 2.0 * x_2i1 - 1.0;

 ...

}

BT CG EP BT (MPI+DVMH) CG (MPI+DVMH) EP (MPI+DVMH)

1 node 665.1 397.5 93.6 63.3 80.99 0.62

2 nodes 361.6 209.6 46.5 50.3 42.6 0.38

1

10

100

1000

BT CG EP

Speedup of MPI + FDVMH programs

1 node 2 nodes

12 | 16 dvm-system.org

Parallelization of the NAS Parallel Benchmarks 3.3.1 (Fortran)
Ti

m
e

(s
ec

)

BT CG EP BT (MPI+DVMH) CG (MPI+DVMH) EP (MPI+DVMH)

1 node 694.6 326.1 98.4 97.7 186.12 0.67

2 nodes 386 218.9 49.2 75.7 96.75 0.38

1

10

100

1000

BT CG EP

Speedup of MPI + CDVMH programs

1 node 2 nodes

Parallelization of the NAS Parallel Benchmarks 3.3.1 (C)

13 | 16 dvm-system.org

Ti
m

e
(s

ec
)

The Ratio of Computation Time to Communication Time
in the BT Benchmark (Fortran)

14 | 16 dvm-system.org

2 4,83

39,87

20,8

12,41

11,73

13,7

13,01

0

10

20

30

40

50

60

70

1 node 2 nodes

Ti
m

e,
 s

ec

Total communications

GPU to CPU copying

GPU computations

CPU computations

SAPFOR relies on the new features of the DVM system that allows us to offload computations in
MPI programs to a GPU in a semi-automatic way.

The SAPFOR system implements an automatic parallelizing compiler that is suitable to
parallelize well-formed programs.

The user may assert program properties or guide SAPFOR through the sequence of source-
to-source transformations.

To gain parallel program performance the SAPFOR system can rely on various optimizations
implemented in the DVMH compiler and runtime system, the DVM system provides
performance analysis tools that operate in terms understandable to a user.

The SAPFOR and DVM systems can significantly reduce the effort required to embed intra-node
parallelism into the existing MPI programs and to utilize available architectures such as multi-
core CPUs or GPUs.

Conclusion

15 | 16 dvm-system.org

http://dvm-system.org

https://github.com/dvm-system

Thank you for your attention

