
LLVM Based Parallelization of C
Programs for GPU

September 22, 2020 | Moscow

Nikita Kataev
Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

SAPFOR (System For Automate Parallelization) is a software development suit that is
focused on cost reduction of manual program parallelization.

The main goals of SAPFOR development:

 Exploration of sequential programs (program analysis and profiling).

 Automatic parallelization (according to DVMH or OpenMP models) of a well-formed
program for which a programmer maximizes algorithm-level parallelism and asserts
high-level properties (implicit parallel programming methodology).

 Semi-automatic program transformation to obtain a well-formed sequential version
of the original program.

Goals of SAPFOR

2 | 14 dvm-system.org

DVMH

Directive-based programming model which aims to create parallel
programs for heterogeneous computational clusters (GPU NVidia,
Intel Xeon Phi, multicore CPUs).

The model includes two programming languages which are the
extensions of standard C and Fortran languages by parallelism
specifications: CDVMH and Fortran-DVMH

The parallel program is developed in terms of a sequential one.

CUDA

MPI

OpenMP

DVMH Programming Model

3 | 14 dvm-system.org

Development of high-level parallel programming languages.
Directive-based programming models.

DVMH

Directive-based programming model which aims to create parallel
programs for heterogeneous computational clusters (GPU NVidia,
Intel Xeon Phi, multicore CPUs).

The model includes two programming languages which are the
extensions of standard C and Fortran languages by parallelism
specifications: CDVMH and Fortran-DVMH

The parallel program is developed in terms of a sequential one.

CUDA

MPI

OpenMP

DVMH Programming Model

4 | 14 dvm-system.org

Development of high-level parallel programming languages.
Directive-based programming models. float A[N][N];

float eps = 0.f;

...

#pragma dvm actual(eps)

#pragma dvm region

{

#pragma dvm parallel([i][j]) tie(A[i][j]) across(A[1:1][1:1] \

 reduction(max(eps))

for (i = 1; i < N - 1; i++)

 for (j = 1; j < N - 1; j++)

 {

 float s = A[i][j];

 A[i][j] = (w / 4) * (A[i-1][j] + A[i][j-1] + A[i][j+1] + A[i+1][j])

 + (1 - w) * A[i][j];

 eps = Max(fabs(s - A[i][j]), eps);

 }

}

#pragma dvm get_actual(eps)

С/С++/Fortran
+

High-level
Assertions

The runtime library of
dynamic analyzer

AST
C/C++/Fortran

LLVM IR with
extended metadata

Mapping of
analysis results

Transformation
+

Analysis

.json Execution .exe

Instrumentation
Clang

Flang

Frontend

Transformation + insertion of DVMH/OpenMP directives

Architecture of SAPFOR

 A graphical user interface is used to manage
parallelization.

 Build automation tools, such as Make, can be also
used to run program analysis.

5 | 14 dvm-system.org

Produce AST + LLVM IR with Clang

Construct source-level alias tree

Use metadata to store its nodes in LLVM IR Clone LLVM module

Analysis servers (separate threads)

Rebuild the alias tree.

Correspondence with original alias tree is
established and the bidirectional map is

initialized.

Transform and analysis passes Analysis passes

Parallelization pass

Transformation of the source code

Bidirectional map stores memory
locations.

Origin Clone

Alias tree handles allow us to track memory
locations across transformation of LLVM IR

Program analysis and transformation
.c

*A,?B, I, 4B

A,8B foo()

Whole
Memory

I,4B

*A,?B, I, 4B

A,8B foo()

Whole
Memory

С/С++

.ll

LLVM

.c

С/С++

.c

OpenMP

.c

.c

DVMH

Request for analysis results from server, explore original LLVM IR to
determine parallelization opportunities of the original program

.ll

LLVM

.ast

AST

.ll

LLVM

.ast

AST

6 | 14 dvm-system.org

Automatic Parallelization Using DVMH Model

7 | 14 dvm-system.org

Parallelization for compute devices with shared memory (multi-core CPU or accelerator) requires that
three kinds of annotations be inserted into the source code:

 specifications of the loops which can be executed in parallel, as well as specifications of private and
reduction variables,

 specification of the compute regions which can be executed on the accelerators, each region may enclose
one or more parallel loops,

 high-level specifications of data transfer between a memory of CPU and a memory of accelerator
(actualization directives).

For each loop the following constraints are examined:

 safety of control flow (the absence of I/O operations, side effects, etc.),
 safety of memory accesses (absence of loop-carried data dependencies and captured pointers),
 the direction of data usage (input, output, and local data),
 canonical loop form according to the OpenMP standard,
 the ability to express properties of memory locations with DVMH directives,
 the ability to collapse iteration spaces of nested loops into one larger iteration space.

Optimization of CPU-to-GPU Data Transfer

for (…) {

 K = … // local

 … = B[I] // in

 A[K] = … // out

} 1

#pragma actual(B)
 for (…) {…}

#pragma get_actual(A)

Explore the direction of data usage for each loop.

f

g
h

We use postorder traversal to reduce
the amount of data transfer.

h() -> g() -> f()

2

We want to prepare data for the accelerator as early as possible and to request data from the
accelerator as late as possible.

8 | 14 dvm-system.org

for (…) {

#pragma actual(B)

#pragma parallel (1)

 for (…) {…}

#pragma get_actual(A)

}

#pragma actual(B)

for (…) {

 for (…) {…}

}

#pragma get_actual(A)

Move actualization directives outside the body of a sequential loop.

Move actualization directives outside the callees.

foo();

void foo() {

#pragma actual(B)

 …

#pragma get_actual(A)

}

#pragma actual(B)

foo();

#pragma get_actual(A)

void foo() {…}

#pragma actual(B)

 for (…) {…}

#pragma get_actual(A)

#pragma actual(B)

 for (…) {…}

#pragma get_actual(A)

#pragma actual(B)

 for (…) {…}

 for (…) {…}

#pragma get_actual(A)

Join actualization directives for neighboring regions.

2.a

f

g
h 2

2.b

2.c

Optimization of CPU-to-GPU Data Transfer

9 | 14 dvm-system.org

Parallelization of the NAS Parallel Benchmarks 3.3.1

Intel Xeon CPU E5-1660 v2, 3.70 GHz
12 threads, 6 cores
Intel Compiler 19.0.2.187

NVIDIA GPU GeForce GTX 1660 Ti

Compiler 10.2

Optimization level –O3

Sp
ee

d
u

p
 (
С

 la
n

g
u

a
g

e)

* Seo S., Jo G., Lee J. Performance Characterization of the NAS Parallel Benchmarks in OpenCL //
2011 IEEE International Symposium on. Workload Characterization (IISWC), 2011. — P. 137-148

*

*

10 | 14 dvm-system.org

0,00

10,00

20,00

30,00

40,00

50,00

60,00

A B C A B C A B C

BT CG EP

Sequential Original

Sequential Transformed

SAPFOR DVMH CPU

SAPFOR DVMH GPU

Manual parallelization OpenCL CPU

Manual parallelization OpenCL GPU

Investigation of the NAS Parallel Benchmarks 3.3.1

11 | 14 dvm-system.org

Simple preliminary manual transformations to deal with the current limitations of SAPFOR
(elimination of macros and merging of source files).

Manual elimination of time measurement functions outside the loop body.

Automatic source-level inline expansion:
 to ensure that functions do not capture pointer arguments (EP, BT),
 to ensure absence of data-dependencies (BT),
 to disambiguate pointer arguments (CG),
 to enable other transformations (EP).

Dynamic analysis to reveal privatizable arrays (BT, EP).

Manual specification of analysis options:
 to assume that subscript expression is in bounds value (BT),
 to prevent math functions to indicate errors by setting errno (EP).

Manual Transformation of the EP Benchmark

12 | 14 dvm-system.org

Replacement of a reduction array of the constant size with scalar variables:
switch (l) {

 case 0: q0 = q0 + 1.0; break;

 case 1: q1 = q1 + 1.0; break;

 ...

}

 q[l] = q[l] + 1.0;

Elimination of a large privitizable array to utilize GPU:

for (i = 0; i < NK; i++) {

 ...

 x[i] = r46 * (*x4);

}

for (i = 0; i < NK; i++) {

 x1 = 2.0 * x[2 * i] - 1.0;

 x2 = 2.0 * x[2 * i + 1] - 1.0;

 ...

}

for (i = 0; i < NK; i++) {

 double x_2i, x_2i1;

 ...

 x_2i = r46 * (*x4);

 ...

 x_2i1 = r46 * (*x4);

 x1 = 2.0 * x_2i - 1.0;

 x2 = 2.0 * x_2i1 - 1.0;

 ...

}

13 | 14 dvm-system.org

Conclusion

SAPFOR implements an approach to the automation of parallel programming which follows
an implicit parallel programming methodology and allows us to automatically produce
DVMH versions of well-formed C programs.

To bring the program to a well-formed version SAPFOR provides source-to-source
transformation techniques.

SAPFOR relies on the use of low-level program transformations, which are invisible to the
programmer, to increase the quality of the analysis of the original program.

The proposed approach enables property sensitive transformations that means the internal
representation of the program can be transformed into the most suitable form for program
analysis.

The source code is available on GitHub: https://github.com/dvm-system

https://github.com/dvm-system
https://github.com/dvm-system
https://github.com/dvm-system
https://github.com/dvm-system

http://dvm-system.org

https://github.com/dvm-system

Thank you for attention

