
Application
of the LLVM Compiler Infrastructure
to the Program Analysis
in SAPFOR

September 24, 2018 | Moscow

Russian Supercomputing Days
2018

Nikita Kataev
Keldysh Institute of Applied Mathematics RAS

2 / 20 dvm-system.org

Complexity of parallel programming

To effectively apply low-level programming models a programmer
should fully understand hardware architecture as well as these
models.

CUDA

3 / 20 dvm-system.org

Simplification of parallel programming

Development of high-level parallel programming languages.

OpenMP

OpenACC

DVMH

XcalableACC

HPF
Chapel

X10

Fortress

hiCUDA

4 / 20 dvm-system.org

DVMH

Directive-based programming model which aims to create parallel
programs for heterogeneous computational clusters (GPU NVidia,
Intel Xeon Phi, multicore CPUs).

The model includes two programming languages which are the
extensions of standard C and Fortran languages by parallelism
specifications: CDVMH and Fortran-DVMH

The parallel program is developed in terms of a sequential one.

Directive-based programming models.

CUDA

MPI

OpenMP

Development of high-level parallel programming languages.

Simplification of parallel programming

DVMH

Directive-based programming model which aims to create parallel
programs for heterogeneous computational clusters (GPU NVidia,
Intel Xeon Phi, multicore CPUs).

The model includes two programming languages which are the
extensions of standard C and Fortran languages by parallelism
specifications: CDVMH and Fortran-DVMH

The parallel program is developed in terms of a sequential one.

Directive-based programming models.

5 / 20 dvm-system.org

CUDA

MPI

OpenMP

#pragma dvm array distribute [block][block]

float A[L][M];
#pragma dvm array align([i][j] with A[i][j])

float B[L][M];

...

#pragma dvm region

{

#pragma dvm parallel([i][j] on A[i][j]) reduction(max(eps))

for (i = 1; i < L - 1; i++)

 for (j = 1; j < M - 1; j++)

 {

 float tmp = fabs(B[i][j] - A[i][j]);

 eps = Max(tmp, eps);

 A[i][j] = B[i][j];

 }

#pragma dvm parallel([i][j] on A[i][j]) shadow_renew(A)

for (i = 1; i < L - 1; i++)

 for (j = 1; j < M - 1; j++)

 B[i][j] = (A[i-1][j] + A[i][j-1] + A[i][j+1] + A[i+1][j]) / 4.0f;

}

Development of high-level parallel programming languages.

Simplification of parallel programming

6 / 20 dvm-system.org

SAPFOR (System For Automate Parallelization) is a software
development suit that is focused on cost reduction of manual
program parallelization.

The main goals of SAPFOR development:

 Exploration of sequential programs (program analysis and profiling).

 Automatic parallelization (according to DVMH model) of a well-formed
sequential program for which a programmer maximizes algorithm-level
parallelism and asserts high-level properties (implicitly parallel
programming).

 Semi-automatic program transformation to obtain a well-formed sequential
version of the original program.

Simplification of parallel programming

SAPFOR (System For Automate Parallelization) is a software
development suit that is focused on cost reduction of manual
program parallelization.

The main goals of SAPFOR development:

 Exploration of sequential programs (program analysis and profiling).

 Automatic parallelization (according to DVMH model) of a well-formed
sequential program for which programmer maximizes algorithm-level
parallelism and asserts high-level properties (implicitly parallel
programming).

 Semi-automatic program transformation to obtain a well-formed sequential
version of the original program.

7 / 20 dvm-system.org

Simplification of parallel programming

Analysis
Determine traits of a sequential program which are
essential for its parallelization: hot spots and data

dependencies.

Auto

Identify in a static way
privatizable, induction and
reduction variables, data

dependencies and dependence
vectors.

Determine and perform an optimal sequence of transform
passes to obtain a sequential program that can be

parallelized efficiently.

Transformation

Auto

Perform the specified single
transform pass..

Auto / Manual

Annotate a sequential program
to specify a single transform pass

which consists of a set of basic
transformations.

Manual

Auto Manual

Exploit
 parallelism

8 / 20 dvm-system.org

Requirements for SAPFOR IR implementation:

 Support for Fortran (95 and higher) and C (99 and higher) programming
languages.

 Ability to implement different analysis technics (data dependence analysis,
induction variable recognition and substitution, reduction variable
recognition, privatization, points-to analysis, alias analysis) which are
necessary for program parallelization.

 Support for source-to-source program transformation.

 Ability to represent large-scale computational applications. For example,
front-end must support standard compiler options to simplify the use of
build automation tools.

The following compiler infrastructures have been considered:
Sage, Cetus, Rose, Ops, GCC, LLVM.

SAPFOR Intermediate Representation (IR)

The LLVM Compiler Infrastructure

The LLVM Project is a collection of modular and reusable compiler and toolchain
technologies.

LLVM began as a research project and now it is an open source project. LLVM is
widely used in academic, open source and commercial projects (Apple, Intel,
NVIDIA, PGI and other). LLVM consists of a number of subprojects which aims to
program optimization, program parallelization and program analysis.

LLVM operates on its own low-level code representation known as the LLVM
intermediate representation (LLVM IR). Different front-ends can be used to
compile multiple programming languages (C, C++, Fortran, Ada, Go and other).

LLVM provides a friendly API for designing analysis and transform passes. LLVM is
currently written using C++ 11 conforming code. The LLVM libraries are well
documented.

http://llvm.org/

9 / 20 dvm-system.org

10 / 20 dvm-system.org

Features of SAPFOR IR
Clang + LLVM (С/С++) and Sage/Flang + LLVM (Fortran)

Program parallelization in SAPFOR is a search for an optimal program-specific sequence of
optimization passes:

 analysis passes compute information about the program.
 transform passes can use analysis passes to “improve” the original program.

LLVM optimization features are also implemented as a passes. It is possible to use existent
passes as well as to implement the new ones.

Source-tor-source program transformation is based on Clang and Sage/Flang capabilities.

Meta information is used to utilize analysis results to evaluate a program in a higher level
language. Correspondence between low-level and high-level program representations is
maintained by synchronization points between the most important structures:

 loop tree;
 memory representation;
 memory access.

There is no need to achieve the complete correspondence between AST and LLVM IR.

11 / 20 dvm-system.org

Three levels of IR

int f(int x, int y) {

 return x + y;

}

define i32 @f(i32 %x, i32 %y) {

entry:

 call void @llvm.dbg.value(metadata i32 %y, i64 0, metadata !11, metadata !12)

 call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !14, metadata !12)

 %add = add nsw i32 %x, %y

 ret i32 %call

}

...

!7 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 3, ...

...

!10 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)

!11 = !DILocalVariable(name: "y", arg: 2, scope: !7, file: !1, line: 3, type: !10)

...

!13 = !DILocation(line: 3, column: 18, scope: !7)

!14 = !DILocalVariable(name: "x", arg: 1, scope: !7, file: !1, line: 3, type: !10)

`-FunctionDecl f 'int (int, int)'

 |-ParmVarDecl x 'int'

 |-ParmVarDecl y 'int'

 `-CompoundStmt

 `-ReturnStmt

 `-BinaryOperator 'int' '+'

 |-ImplicitCastExpr 'int' <LValueToRValue>

 | `-DeclRefExpr 'int' lvalue ParmVar 'x' 'int'

 `-ImplicitCastExpr 'int' <LValueToRValue>

 `-DeclRefExpr 'int' lvalue ParmVar 'y' 'int'

AST

LLVM IR

DWARF

12 / 20 dvm-system.org

int f(int x, int y) {

 return x + y;

}

define i32 @f(i32 %x, i32 %y) {

entry:

 call void @llvm.dbg.value(metadata i32 %y, i64 0, metadata !11, metadata !12)

 call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !14, metadata !12)

 %add = add nsw i32 %x, %y

 ret i32 %call

}

...

!7 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 3, ...

...

!10 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)

!11 = !DILocalVariable(name: "y", arg: 2, scope: !7, file: !1, line: 3, type: !10)

...

!13 = !DILocation(line: 3, column: 18, scope: !7)

!14 = !DILocalVariable(name: "x", arg: 1, scope: !7, file: !1, line: 3, type: !10)

`-FunctionDecl f 'int (int, int)'

 |-ParmVarDecl x 'int'

 |-ParmVarDecl y 'int'

 `-CompoundStmt

 `-ReturnStmt

 `-BinaryOperator 'int' '+'

 |-ImplicitCastExpr 'int' <LValueToRValue>

 | `-DeclRefExpr 'int' lvalue ParmVar 'x' 'int'

 `-ImplicitCastExpr 'int' <LValueToRValue>

 `-DeclRefExpr 'int' lvalue ParmVar 'y' 'int'

AST

LLVM IR

DWARF

Three levels of IR

13 / 20 dvm-system.org

Goals of program transformation

Program transformation which improves the quality of the source
program analysis:

 IR-level transformation;
 original program keeps its properties across the transformation;
 hidden from a programmer.

Program transformation which reveals hidden parallelism in a the
source code:

 source-to-source transformation;
 changes properties of the original program;
 a programmer may evaluate SAPFOR decisions and make corrections.

Before After
1. void copy(float *A, int N, int M) {

2. int X;

3. for (int I = 0; I < N; ++I) {

4. X = I + M;

5. A[I] = A[X];

6. }

7. }

1. void copy(float *A, int N, int M) {

2. for (int I = 0; I < N; ++I) {

3. A[I] = A[I + M];

4. }

5. }

14 / 20 dvm-system.org

Memory access description

This includes results of data dependence analysis, induction and
reduction variable recognition, privatization, alias analysis.

All information provided by SAPFOR must be attached to the items
of the source program.

Lower level of LLVM IR does not directly allow LLVM to be applicable
for the description of analysis results.

Source-level alias tree has been develped.

It depicts the structure of accessed memory using source-level
debug information.

15 / 20 dvm-system.org

Source-level alias tree: example
struct S {float X; float Y;};

void foo(struct S * restrict A,

struct S * restrict B) {

 struct S *P;

 P = A;

 P->X = 0;

 P->Y = 0;

 P = B;

 P->X = 0;

 P->Y = 0;

}

<P->X,4> <P->Y,4>

 <*A,8> <*B,8> <*P,8>

 Each memory location is identified by the address of the start of the location
and its size.

 Two memory locations fall into a single node of a source-level alias tree, if
they may alias.

 The union of all the memory locations from the parent nodes covers the
union of the memory locations from a child

16 / 20 dvm-system.org

Source-level alias tree: example
struct S {float X; float Y;};

void foo(struct S * restrict A,

struct S * restrict B) {

 struct S *P;

 P = A;

 P->X = 0;

 P->Y = 0;

 P = B;

 P->X = 0;

 P->Y = 0;

}

struct S {float X; float Y;};

void foo(struct S * restrict A,

struct S * restrict B) {

 A->X = 0;

 A->Y = 0;

 B->X = 0;

 B->Y = 0;

}

<P->X,4> <P->Y,4>

 <*A,8> <*B,8> <*P,8>

<*P,8>

<P->X,4> <P->Y,4>

<*A,8>

<A->X,4> <A->Y,4> <B->X,4> <B->Y,4>

<*B,8>

IR-level transformation

17 / 20 dvm-system.org

Source-level alias tree

The source-level alias tree restores original program properties
after transformation. It depicts the structure of accessed memory
using source-level debug information:

 summarizes IR-level memory locations to higher level items;

 corresponds to a hierarchical type system of a higher level language
(aggregate type holds its member, ‘long’ holds ‘int’, etc.).

 does not directly depend on a programming language and front-end,
because it uses metadata (DWARF), rather than abstract syntax tree;

 adjust its structure across the transformation of LLVM IR which does not
affect the structure of the memory used in the original program.

18 / 20 dvm-system.org

Evaluation of the NAS Parallel Benchmarks (NPB)

Benchmark

Number Of Loops

Total Array Call Indep.
Dep. Priv.

Ind. Red.
Total Call Only Total. Indep.

BT 181 171 51 101 80 50 16 109 65 179 0

CG 47 14 6 17 30 6 2 15 1 46 8

EP 9 6 5 3 6 5 2 3 0 9 2

IS 12 11 3 4 8 3 2 3 0 12 0

LU 187 156 40 96 91 39 27 84 39 171 3

MG 81 37 22 12 69 19 14 38 2 77 1

SP 250 243 48 158 92 47 16 145 87 248 0

Total 767 638 175 391 376 169 79 407 194 742 14

 Loops with data dependencies averaged 49% (Dep.) of the total number of loops.
 A large number of dependencies indicate the need to program transformation for their

parallel execution.
 The variable privatization is necessary for the parallel execution of about the half of the

loops (including loops without dependencies).

19 / 20 dvm-system.org

Conclusion

SARFOR uses:

 LLVM IR to obtain information about the original program;

 AST for source-to-source program transformation.

Investigation of transformed LLVM IR improves the quality of the
source program analysis.

The developed source-level alias tree allows us to restore original
program properties after transformation.

Source-level transformations are vital to provide program
parallelization in interaction with a programmer. So, the future works
involve the implementation of source-to-source transformations and
application of LLVM based analysis to check their correctness.

http://dvm-system.org

Thank you for attention

