
Russian Supercomputing Days - 2015

Moscow, September 28-29, 2015

Automated parallelization of sequential
C-programs on the example of two
applications from the field of laser

material processing

M.S. Baranov12, D.I. Ivanov12, N.A. Kataev1, A.A. Smirnov1

Keldysh Institute of Applied Mathematics Russian Academy of Sciences1

Lomonosov Moscow State University2

The proposed approach to a semi-automatic
 parallelization

2 / 5 28.09.2015

The optimization and parallelization of programs are an execution of a sequence analysis and transform
passes. The choice of the optimal sequence depends on the application, the purpose of optimization, the
architecture of the target computer system and technologies used for parallel programming.

Implementation

1. There are a number of basic transformations that can be performed in an automatic way: variable
propagation, loop-invariant code motion, loop unrolling, loop merging, loop distribution, etc.

2. User selects basic transformations that should be performed and annotates a program.
3. Before the execution of transformations the assistance tool checks their permissibility.

Who chooses the sequence of these passes? Who performs each pass?

User describes a transform pass
that should be performed.

The described passes are
performed in automatic way.

Example of a basic transformation:
loop unrolling

3 / 5 28.09.2015

for (I = 1; I < Nx + 1; ++I)
 for (J = 1; J < Nz + 1; ++J)
 #pragma x unroll
 for (II = 0; II < 2; ++II)
 for (JJ = 0; JJ < 2; ++JJ) {
 …
 Flx[I][J - 1 + JJ] = Flx[I][J - 1 + JJ] - Iloc[0] * Fl[0];
 Flz[I - 1 + II][J] = Flz[I - 1 + II][J] - Jloc[1] * Fl[1];
 }

#pragma x unroll [(index-list)]
 index ::= var : int-value

for (I = 1; I < Nx + 1; ++I)
 for (J = 1; J < Nz + 1; ++J) {
 ...
 Flx[I][J - 1] = Flx[I][J - 1] - 1 * Fl[0];
 Flz[I - 1][J] = Flz[I - 1][J] - 1 * Fl[1];
 ...
 Flx[I][J] = Flx[I][J] - 1 * Fl[0];
 Flz[I - 1][J] = Flz[I - 1][J] - -1 * Fl[1];
 ...
 Flx[I][J - 1] = Flx[I][J - 1] - -1 * Fl[0];
 Flz[I][J] = Flz[I][J] - 1 * Fl[1];
 ...
 Flx[I][J] = Flx[I][J] - -1 * Fl[0];
 Flz[I][J] = Flz[I][J] - -1 * Fl[1];
}

Problem

The pattern of access to elements of the arrays Flx and Flz on different iterations is unknown.
Loop-carried dependencies may arise.

Solution

Simplify these accesses using loop unrolling transformation.

Semi-automatic parallelization of applications
Powder 2D and Powder 3D

4 / 5 28.09.2015

These applications implement the two-dimensional and three-dimensional problems of modeling of
melting of multi-component powder in selective laser sintering based on multicomponent and
multiphase hydrodynamic model.

The programs have been parallelized using parallel programming technologies OpenMP and OpenACC.

Original Transformed Auto
(original)

Auto
(transformed)

OpenMP OpenACC

1 thread 50,59 14,19 16,06 81,12

2 threads 10,76

4 threads 8,26

8 threads 62,8 9,9 7,19

1 GPU 9,37

Hardware
• CPU: 4-cores processor Intel Core i7-3770 CPU 3.40GHz with

active Hyper Threading (2 threads per core);
• GPU: NVIDIA GTX Titan (Kepler generation).

Compilers
• Intel C Compiler V15.0 with option -O3 for sequential and

OpenMP programs. Results of automatic parallelization with
option -parallel are also presented at the table above.

• PGI V15.1-0 with option –O3 for OpenACC programs.

x 7

on 8 threads
= 3,15 x 2,2

Russian Supercomputing Days - 2015

http://dvm-system.org/

Thank you for attention

?

