

22 August, 2023 | Astana, Kazakhstan

Automation of programming for promising
high-performance computing systems

Vladimir Bakhtin, Dmitry Zakharov,

Nikita Kataev, Alexander Kolganov,

Mikhail Yakobovskiy
Keldysh Institute of Applied Mathematics RAS,

Moscow, Russia

2 | 32 dvm-system.org

Agenda

 Today’s parallel programming and introduction to the DVMH directive-based programming model.

 Typical parallelization strategy in the DVMH model from a sequential program to a tuned parallel one for

heterogeneous cluster:

 program analysis and profiling,

 parallelization for multiprocessor, GPUs and distributed memory system,

 program debugging and performance analysis.

 Overview of programs developed in the DVMH model with the help of System FOR Automated Parallelization (SAPFOR)

on the example of the parallelization of a software packaged for numerical simulation of hydrodynamic instabilities.

 Conclusion.

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

3 | 32 dvm-system.org 17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

Parallel programming tools

Performance Convenience

Low-level models give programmers
fine-grained control over the

program execution and allow them
to gain the best performance.

Directive-based models, DSLs and
general purpose libraries

simplify programming and increase
software maintainability while still

providing high performance.

Automatic parallelizing compilers
return a fully parallelized source

code (maybe not optimal) for a given
sequential one.

SAPFOR, PPCG, Polly, Pluto,

Apollo, Paradigm, SUPERB
OpenMP, OpenACC, DVMH,
XcalableACC, Halid, Vobla,

Graphit, MKL, Thrust, cuBLAS

MPI, CUDA, OpenCL, SHMEM,
pThreads

4 | 32 dvm-system.org

Blended approach to parallel programming
Try to automate as much as possible, but allow the programmer to participate in parallelization if necessary.

 Parallelization process is considered as a sequence of separate steps.
 Each step can be automated if possible or, otherwise, executed manually.

Auto Manual

Exploit
 parallelism

Code generation Debugging

Optimization

Analysis

Determine traits of a sequential program which are
essential for its parallelization: hot spots and data

dependencies.

Determine and perform an optimal sequence of transform
passes to obtain a sequential program that can be

parallelized efficiently.

Transformation

Auto

Identify in a static or dynamic
way privatizable, induction and

reduction variables, data
dependencies and dependence

vectors.

Manual

Assert program properties
that cannot be analyzed by the

compiler.

Auto

Perform the specified single
transform pass.

Auto / Manual

Annotate a sequential program to
specify a single transform pass which

consists of a set of basic
transformations.

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

5 | 32 dvm-system.org

Three main parts of the blended approach
High-level programming model

 General enough to solve tasks in a wide domain.

 Wide and extendable enough to support different parallel architectures.

 Implicit enough to hide from the application programmer implementation details.

 Explicit enough to allow the compiler to optimize programs for a chosen architectures.

Automation tools

 Exploration of sequential programs (program analysis and profiling).

 Automatic parallelization (according to the high-level programming model) of a well-formed program for which
a programmer maximizes algorithm-level parallelism and asserts high-level properties (implicit parallel
programming methodology).

 Semi-automatic program transformation to obtain a well-formed sequential version of the original program.

User participation

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

6 | 32 dvm-system.org

The DVMH programming model

Data distribution
 Distribution of array elements across computational nodes:

directives distribute / align

Computation distribution
 Mapping of the loop iterations on the processors in accordance with data

distribution:
directive parallel

Variable properties and remote data
 Organization of the efficient access to remote data located on other

processors:
 clauses shadow / across / remote

 Organization of the efficient execution of reduction operations which are
global operations on the data located on different processors:

clause reduction: max/min/sum/maxloc/minloc/…

Compute regions and specifications of CPU-to-GPU data transfer
 Specification of the regions which are special constructions of the DVMH

languages. These constructions consist of sequential parts of code and
parallel loops. The regions can be executed on the accelerators:

directive region

 Specification of the actualization directives which control data movement
between a memory of CPU and memories of accelerators:

directives actual / get_actual

DVMH

Directive-based programming model which aims to create parallel
programs for heterogeneous computational clusters (GPU NVidia, Intel
Xeon Phi, multicore CPUs).

The model includes two programming languages which are the
extensions of standard C and Fortran languages by parallelism
specifications: CDVMH and Fortran-DVMH

The parallel program is developed in terms of a sequential one.

Development of high-level parallel programming languages.
Directive-based programming models.

CUDA

MPI

OpenMP

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

7 | 32 dvm-system.org

Features of the DVMH model
Parallelism exploitation

 Programming is accomplished in a sequential style.
 A normal compiler neglects specifications of parallelism, so the same program is suited for sequential and for

parallel execution.
 Specifications of a low-level data transfer and synchronization are absent in a source code.
 High-level parallelism specifications preserve source code readability and maintainability.

Dynamic tuning methods
 The advanced runtime system manages the program execution and adapts it to all available resources.

 Optimizations hidden from the user:

 data transformation at runtime to choose the right memory access pattern,
 dynamic CUDA handler compilation during the program runtime,
 parallel execution of loops with regular loop-carried dependences.

Debugging (dynamic analysis, comparative debugging) and performance analysis and prediction

 All analysis tools operate in terms understandable to a user.

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

8 | 32 dvm-system.org

Typical parallelization strategy in the DVMH model
1. Migration of a program to a target OS and to a target compute system, the original program debugging.

2. Program profiling.

3. Parallelization of the most time-consuming source code regions:

 analysis of chosen code regions (exploration of control-flow and data-flow graphs, memory access pattern, loop-carried data
dependencies as well as spurious dependencies),

 incremental parallelization for shared memory (multiprocessor and GPU),

 incremental parallelization for distributed memory to asses possible performance gain on a distributed memory system.

4. Parallelization of the entire program taking into account the already found solutions.

5. Performance analysis and search for an optimal execution configuration of a program (number of processors to use, number of
dimensions in the processor grid as well size of each dimension, distribution of computations between GPUs and CPU cores inside each
compute node).

6. Increasing of a program reliability and reduction of input/output overhead (insertion of checkpoints and parallel IO).

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

9 | 32 dvm-system.org

Example: solving heat equation using Jacobi iterative method

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 program jacobi

 double precision, allocatable, dimension(:,:,:) :: f, newf, r

 ...

 allocate(f(mx, my, mz))

 allocate(newf(mx, my, mz))

 allocate(r(mx, my, mz))

 curf = 0

 do n = 1, NITER

 if (curf .eq. 0) then

 eps = dostep(f, newf, r, rdx2, rdy2, rdz2, beta, mx, my, mz)

 else

 eps = dostep(newf, f, r, rdx2, rdy2, rdz2, beta, mx, my, mz)

 endif

 print *, 'Iteration=' , n, 'eps=', eps

 curf = 1 - curf

 enddo

 end

 double precision function dostep(f, newf, r, rdx2, rdy2, rdz2, beta, mx, my, mz)

 integer :: mx, my, mz

 double precision, dimension(mx,my,mz) :: f, newf, r

 double precision :: rdx2, rdy2, rdz2, beta, eps

 integer :: i, j, k

 eps = 0.

 do k = 2, mz - 1

 do j = 2, my - 1

 do i = 2, mx - 1

 newf(i, j, k) = ((f(i-1,j,k)+f(i+1,j,k))*rdx2+(f(i,j-1,k)+f(i,j+1,k))*rdy2

 & +(f(i,j,k-1)+f(i,j,k+1))*rdz2-r(i,j,k)) * beta

 eps = max(eps,abs(newf(i,j,k)-f(i,j,k)))

 enddo

 enddo

 enddo

 dostep = eps

 end function

10 | 32 dvm-system.org

Step 1: migration to the target system and debugging

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

Specific debugging tools are required to ensure the similar program behavior on
different OS and compute systems (even in case of sequential programs).

Different compilers as well as different versions of the same compiler may affect
program behavior and reveal previously hidden errors under new optimization
circumstances.

BW: [4] "eps"; {"test.f", 26}

AW: [4] "eps" = 0; {"test.f", 26}

PL: 2() [2]; {"test.f", 29}, 96.B

 IT: 18, (2,2)

 BW: [4] "b(i,j)"; {"test.f", 31}

 RD: [4] "a(i - 1,j)" = 681.72562479972839; {"test.f", 31}

 RD: [4] "a(i + 1,j)" = 551.3431462012436; {"test.f", 31}

 RD: [4] "a(i,j - 1)" = 681.72562479972839; {"test.f", 31}

 RD: [4] "a(i,j + 1)" = 551.3431462012436; {"test.f", 31}

 AW: [4] "b(i,j)" = 616.534385500486; {"test.f", 31}

 <...>

EL: 2; {"test.f", 33}, 96.E

PL: 3() [2]; {"test.f", 36}, 97.B

 IT: 18, (2,2)

 RV_BW: [4] "eps"; {"test.f", 38}

 RD: [4] "a(i,j)" = 616.51675929759654; {"test.f", 38}

 RD: [4] "b(i,j)" = 616.534385500486; {"test.f", 38}

 RV_AW: [4] "eps" = 0.017626202889459819; {"test.f", 38}

 BW: [4] "a(i,j)"; {"test.f", 39}

 RD: [4] "b(i,j)" = 616.534385500486; {"test.f", 39}

 AW: [4] "a(i,j)" = 616.534385500486; {"test.f", 39}

 <...>

The DVM system provides the user with a comparative debugging tool:

 Comparative debugging relies on the accumulation of calculation results in a program execution trace with
subsequently comparison of the gathered trace with a program behavior under other circumstances.

 The program trace allows the debugging tool to determine the place in the program and the moment when
unexpected behavior occurs.

 The trace comprises all variable accesses, the beginning and ending of the execution of loop iterations.

 Compiler time and runtime options can be used to select events for tracing.

11 | 32 dvm-system.org

Step 2: sequential program profiling

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

INTERVAL (NLINE=12 SOURCE=jacobi.f) LEVEL=3 SEQ EXE_COUNT=5120

--- The main characteristics ---

Parallelization efficiency 1.0000

Execution time 57.3396

Processors 1

Threads amount 1

Total time 57.3396

Productive time 57.3396 (CPU= 56.8142 Sys= 0.5254 I/O= 0.0000)

--- The comparative characteristics ---

 Tmin N proc Tmax N proc Tmid

Execution time 57.3396 1 57.3396 1 57.3396

User CPU time 56.8142 1 56.8142 1 56.8142

Sys. CPU time 0.5254 1 0.5254 1 0.5254

Processors 1 1 1 1 1

--- The execution characteristics ---

 1

Execution time 57.3396

User CPU time 56.8142

Sys. CPU time 0.5254

Processors 1

The DVMH performance analyzer constructs hierarchical description
of a program:

 performance analysis of specific regions of code (a loop nest,
iteration of a loop, etc.).

 target regions of code can be chosen manually or automatically
set by the compiler according to user provided level of
instrumentation.

Profiling of all the loops and intervals specified
by INTERVAL and END INTERVAL directives.

./dvm f –e4 jacobi.f

./dvm pa sts.gz+ jacobi.peft.txt

12 | 32 dvm-system.org

Step 3.1: incremental parallelization for a multiprocessor

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 double precision function dostep(f, newf, r, rdx2, rdy2,

 & rdz2, beta, mx, my, mz)

 integer :: mx, my, mz

 double precision, dimension(mx,my,mz) :: f, newf, r

 double precision :: rdx2, rdy2, rdz2, beta, eps

 integer :: i, j, k

 eps = 0.

CDVM$ PARALLEL (k,j,i), REDUCTION(max(eps))

 do k = 2, mz - 1

 do j = 2, my - 1

 do i = 2, mx - 1

 newf(i, j, k) = ((f(i-1,j,k)+f(i+1,j,k))*rdx2

 & +(f(i,j-1,k)+f(i,j+1,k))*rdy2

 & +(f(i,j,k-1)+f(i,j,k+1))*rdz2

 & -r(i,j,k)) * beta

 eps = max(eps,abs(newf(i,j,k)-f(i,j,k))

 enddo

 enddo

 enddo

 dostep = eps

 end function

47,66

23,78

12,04
8,35

6,23 5,24 4,34

0

10

20

30

40

50

60

1 2 4 6 8 10 12

Ti
m

e
 (

se
c.

)

Number of threads

K10 cluster (KIAM RAS):
2 Intel Xeon E5-2660 (8-core)
3 NVIDIA Fermi M2090 1 node

 Incremental parallelization and quick estimation of the possible
performance of DVMH parallelization across CPU and GPU cores
before full-scale parallelization.

 Possibility to use DVMH parallelization inside the cluster node in
MPI programs.

13 | 32 dvm-system.org

Step 3.1: incremental parallelization for a GPU

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 Incremental parallelization and quick estimation of the possible
performance of DVMH parallelization across CPU and GPU cores
before full-scale parallelization.

 Possibility to use DVMH parallelization inside the cluster node in
MPI programs.

K10 cluster (KIAM RAS):
2 Intel Xeon E5-2660 (8-core)
3 NVIDIA Fermi M2090 1 node

 double precision function dostep(f, newf, r, rdx2, rdy2,

 & rdz2, beta, mx, my, mz)

 integer :: mx, my, mz

 double precision, dimension(mx,my,mz) :: f, newf, r

 double precision :: rdx2, rdy2, rdz2, beta, eps

 integer :: i, j, k

CDVM$ ACTUAL(eps)

 eps = 0.

CDVM$ REGION INOUT(f,newf, eps), IN(r,rdx2,rdy2,rdz2,beta)

CDVM$ PARALLEL (k,j,i), REDUCTION(max(eps))

 do k = 2, mz - 1

 do j = 2, my - 1

 do i = 2, mx - 1

 newf(i, j, k) = ((f(i-1,j,k)+f(i+1,j,k))*rdx2

 & +(f(i,j-1,k)+f(i,j+1,k))*rdy2

 & +(f(i,j,k-1)+f(i,j,k+1))*rdz2

 & -r(i,j,k)) * beta

 eps = max(eps,abs(newf(i,j,k)-f(i,j,k))

 enddo

 enddo

 enddo

CDVM$ ENDREGION

CDVM$ GET_ACTUAL(eps)

 dostep = eps

 end function

0,69

4,34

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 GPU 12 threads

Ti
m

e
 (

se
c.

)

14 | 32 dvm-system.org

Step 3.2: incremental parallelization for a cluster

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 double precision function dostep(f, newf, r, rdx2, rdy2,

 & rdz2, beta, mx, my, mz)

 integer :: mx, my, mz

 double precision, dimension(mx,my,mz) :: f, newf, r

 double precision :: rdx2, rdy2, rdz2, beta, eps

 integer :: i, j, k

C AUXILARY TEMPORARY ARRAYS

 double precision, dimension(mx,my,mz) :: f_, newf_, r_

C DATA DISTRIBUTION

CDVM$ DISTRIBUTE (BLOCK,BLOCK,BLOCK) :: f

CDVM$ ALIGN newf(i,j,k) WITH f(i,j,k)

CDVM$ ALIGN r(i,j,k) WITH f(i,j,k)

CDVM$ ACTUAL(eps)

 eps = 0.

CDVM$ INTERVAL(1)

С COPY BEFORE

 f = f_

 newf = newf_

 r = r_

CDVM$ END INTERVAL

CDVM$ REGION

CDVM$ PARALLEL (k,j,i) ON newf(i,j,k), REDUCTION(max(eps)),

CDVM$* SHADOW_RENEW(f)
 do k = 2, mz - 1

 do j = 2, my - 1

 do i = 2, mx - 1

 newf(i, j, k) = ((f(i-1,j,k)+f(i+1,j,k))*rdx2

 & +(f(i,j-1,k)+f(i,j+1,k))*rdy2

 & +(f(i,j,k-1)+f(i,j,k+1))*rdz2

 & -r(i,j,k)) * beta

 eps = max(eps,abs(newf(i,j,k)-f(i,j,k))

 enddo

 enddo

 enddo

CDVM$ ENDREGION

CDVM$ GET_ACTUAL(eps)

CDVM$ INTERVAL(3)

С COPY AFTER

 f_ = f

 newf_ = newf

 r_ = r

CDVM$ END INTERVAL
 dostep = eps

 end function

Incremental parallelization based on insertion of temporary arrays can be obtained with only local program
transformations affected the time-consuming regions we are interested in.

In spite of it still may degrade the entire program performance it allows us to:

 estimate the possible performance gain each time-consuming source code region may separately achieve if
data and computation distribution is accomplished in the way that is most suitable to the code region,

 estimate the variety of desirable data and computation distributions for the number of code regions the
program contains.

15 | 32 dvm-system.org

Step 3.3: incremental parallelization for a cluster

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

K10 cluster (KIAM RAS):
2 Intel Xeon E5-2660 (8-core)
3 NVIDIA Fermi M2090 1 node

10,69 9,9 9,97
5,89 5,17 5,22 5,6 5,59 5,17

6,16
5,75 6,06

4,98
3,89 4 4,51 4,82 4,13

24,73

21,75 21,9 30,49

24,82 25,13

28,73 29,02

24,96

0

5

10

15

20

25

30

35

40

45

Ti
m

e
 (

se
c.

)

Data distribution pattern

Copy after

Parrallel loop

Copy before

16 | 32 dvm-system.org

Step 4: full-scale parallelization for a heterogeneous cluster

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 program jacobi

 double precision, allocatable, dimension(:,:,:) :: f, newf

 double precision, allocatable, dimension(:,:,:) :: r

CDVM$ DISTRIBUTE :: f

CDVM$ ALIGN :: newf, r

 ...

 allocate(f(mx, my, mz))

 allocate(newf(mx, my, mz))

 allocate(r(mx, my, mz))

CDVM$ REDISTRIBUTE (BLOCK, BLOCK, BLOCK) :: f

CDVM$ REALIGN (i,j,k) WITH f(i,j,k) :: newf, r

 curf = 0

 do n = 1, NITER

 if (curf .eq. 0) then

 eps = dostep(f, newf, r, rdx2, rdy2, rdz2,

 & beta, mx, my, mz)

 else

 eps = dostep(newf, f, r, rdx2, rdy2, rdz2,

 & beta, mx, my, mz)

 endif

 print *, 'Iteration=' , n, 'eps=', eps

 curf = 1 - curf

 enddo

 end

 double precision function dostep(f, newf, r, rdx2, rdy2,

 & rdz2, beta, mx, my, mz)

 integer :: mx, my, mz

 double precision, dimension(mx,my,mz) :: f, newf, r

 double precision :: rdx2, rdy2, rdz2, beta, eps

 integer :: i, j, k

CDVM$ INHERIT f,newf,r

CDVM$ ACTUAL(eps)

 eps = 0.

CDVM$ REGION

CDVM$ PARALLEL (k,j,i) ON newf(i,j,k), REDUCTION(max(eps)),

CDVM$* SHADOW_RENEW(f)

 do k = 2, mz - 1

 do j = 2, my - 1

 do i = 2, mx - 1

 newf(i, j, k) = ((f(i-1,j,k)+f(i+1,j,k))*rdx2

 & +(f(i,j-1,k)+f(i,j+1,k))*rdy2

 & +(f(i,j,k-1)+f(i,j,k+1))*rdz2

 & -r(i,j,k)) * beta

 eps = max(eps,abs(newf(i,j,k)-f(i,j,k))

 enddo

 enddo

 enddo

CDVM$ ENDREGION

CDVM$ GET_ACTUAL(eps)

 dostep = eps

 end function

 Final fusion of the desirable data and computation distributions in a single one
should take into account their performance impact estimated on the previous
step.

 However, this fusion may require a significant transformation of the source
code which is not covered by code regions parallelized on previous steps.

17 | 32 dvm-system.org

Step 5: tuning parallel program performance

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

The factors which influence parallel program performance on a distributed memory system:

 program parallelism which is a part of parallel calculations in total volume of calculations,
 load balancing of processors,
 time of interprocessor communications,
 degree of overlapping of interprocessor communications with calculations.

DVMH runtime knowns:

 whether sequential or parallel part of the program is executed on any processor at any moment,
 all synchronization and communication points,
 reason for communication (exchange of shadow edges, access to remote data, reduction operations, etc.).

During a program execution the DVMH runtime stores time characteristic information in processor memory and writes
the data into a file upon the program completion.

The performance visualizer allows the user to get time characteristics of the program execution in more or less detail.

18 | 32 dvm-system.org

Main characteristics and their components

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 Time of the program execution (Execution time).

 The number of used processors (Processors).

 Total processor time (Total time) = Execution time * Processors.

 Productive time (Productive time) predicted execution time on a single processor.

 Efficiency coefficient (Parallelization efficiency) = Productive time / Total time

 Lost time (Lost time) = Total time - Productive time.

 Possible reasons which produce the lost time.

Characteristics of
program execution on

each processor or GPU

Main characteristics and
their components

19 | 32 dvm-system.org

Dynamic tuning methods for DVMH programs

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 Data and computation distribution between cluster nodes according to their performance.

 Data and computation distribution between GPUs and CPU cores according to their performance:

 simple static mode – data and computation distribution in accordance with a user specified weights,

 simple dynamic mode – data and computation distribution is selected during a program execution,

 dynamic with selection mode – profile-guided data and computation distribution.

 Data transformation at runtime to choose the right memory access pattern.

 Dynamic CUDA handler compilation during the program execution.

More than 20 environment variables to control program execution:

export DVMH_PPN=‘2,1,1’ # Number of process per node

export DVMH_NUM_THREADS=‘8,240,240’ # Number of CPU threads per process

export DVMH_NUM_CUDAS=‘3’ # Number of GPUs per process

export DVMH_CPU_PERF=‘’ # Performance of all cores of CPU per process

export DVMH_CUDAS_PERF=‘’ # Performance of each GPU per device

export DVMH_SCHED_TECH=‘dynamic1’ # Schedule mode

export DVMH_SET_AFFINITY=‘enable’ # Thread affinity control

export DVMH_NO_DIRECT_COPY=‘1’ # Don’t use GPUDirect transfers

export DVMH_IO_BUF_SIZE=‘10485760’ # Size of input/output buffer

...

20 | 32 dvm-system.org

Comparison of execution time on a multiprocessor and GPU

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

0,32

0,38

0,29

0,3

0,31

0,32

0,33

0,34

0,35

0,36

0,37

0,38

0,39

1 MPI x (2 GPU + 12 threads) 2 MPI x (1 GPU + 6 threads)

Ti
m

e
 (

se
c.

)

0,69

0,36
0,4

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 GPU 1 MPI x 2 GPU 2 MPI x 1 GPU

Ti
m

e
 (

se
c.

)

K10 cluster (KIAM RAS):
2 Intel Xeon E5-2660 (8-core)
3 NVIDIA Fermi M2090 1 node

DVMH_SCHED_TECH=1

DVMH_CPU_PERF='0.08'

DVMH_CUDAS_PERF='0.46'

DVMH_SCHED_TECH=1

DVMH_CPU_PERF='0.095'

DVMH_CUDAS_PERF='0.905'

Static distribution of data and computation between GPUs and CPU
cores according two weights estimated at preliminary parallel

program profiling.

21 | 32 dvm-system.org

Step 6: program reliability and parallel IO in the DVMH model

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

129,88
117,19

63,68

18,95

41,95

42,17

105,79

68,69

0

20

40

60

80

100

120

140

160

180

200

SYNCHRONOUS PARALLEL LOCAL ASYNCHRONOUS

Ti
m

e
 (

se
c.

)

IO Calculations

// C/C++

const char *mode = "wb";

FILE *cp = fopen("jac_%02d.dat", mode);

! Fortran

!DVM$ IO_MODE (LOCAL, ASYNC)

 open(4, ACCESS='STREAM', FILE='DATA_%02d.DAT', ERR=44)

 ...

 write(4) A(2:L-1,2:L-1), B

 ...

 close(4)

Parameter IO mode

“wb” Synchronous serial I/O

“wbl” Synchronous parallel I/O to a local file

“wbp” Synchronous parallel I/O to a parallel file

“wbs” Asynchronous serial I/O

“wbsl” Asynchronous parallel I/O to a local file

“wbsp” Asynchronous parallel I/O to a parallel file
Lomonosov (RCC MSU):

2 Intel Xeon 5570/5670 (4/6-core)
1 NVIDIA X2070

1 node

Method: Jacoby
Grid size: 32000 х 32000
Number of iterations: 100
Number of checkpoints: 10

22 | 32 dvm-system.org

History of success
 REACTOR – neutron physical design of nuclear reactors and hybrid nuclear facilities,

 Elasticity3D – numerical simulation of 3D seismic fields in elastic media with complex geometry of the free surface,

 HyperbolicSolver2D – solution of systems of hyperbolic equations in 2D domains of complex shape using an explicit and unstructured
meshes,

 GIMM_APP_Powder_3D/GIMM_APP_Powder_3D – parallel programs for 2D and 3D simulation of melting multicomponent powders
under the influence of selective laser sintering based on the multicomponent and multiphase fluid dynamics model,

 QuantumBitStates – calculation of states of quantum computer cubits by solving the unsteady Schrödinger equation for two particles
taking into account their spins,

 GIMM_APP_Crystal_2D/GIMM_APP_Crystal_3D – parallel programs for 2D and 3D simulation of 3D crystallization processes under the
influence of laser or electron beam based on the multicomponent and multiphase fluid dynamics model,

 ThermalConductivity – solution of the boundary value problem for the two-dimensional quasilinear parabolic equation written in
conservation form in various statements on unstructured triangular meshes,

 MHPDV – simulation of the spherical explosion in an external magnetic field by solving the equations of perfect magnetic hydrodynamics,

 NCOM – simulation of multicomponent multiphase isothermal filtering for oil and gas deposits,

 Cavity – simulation of circulatory flow in a planar square cavity with a moving upper lid,

 Container – simulation of flow of heavy viscous fluid under the gravity force in a rectangular container with an open upper wall and a hole
in a lateral wall,

 and other.

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

23 | 32 dvm-system.org

A software packaged for numerical simulation of hydrodynamic instabilities

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

The program contains about 10 thousand lines of code in the C
language. It comprises 187 functions (including the functions of the
standard C library and functions from the GNU Scientific Library),
of which 137 are user-defined functions. The number of declared
variables is 1617, and all functions contains 244 loops.

24 | 32 dvm-system.org

Interactive assistance tool: program structure and loop properties

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

25 | 32 dvm-system.org

Interactive assistance tools: alias analysis and data dependencies

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

26 | 32 dvm-system.org

Architecture of SAPFOR
SAPFOR (System For Automate Parallelization) is a software development suit that is focused on cost reduction of manual
program parallelization.

С/С++/Fortran
+

High-level
Assertions The runtime library of

dynamic analyzer

Transformation
+

Analysis

.json Execution .exe

Instrumentation Frontend

Intermediate
Representation

Transformation + insertion of DVMH/OpenMP directives

 A graphical user interface is used to manage
parallelization.

 Build automation tools, such as Make, can be also used
to run program analysis.

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

27 | 32 dvm-system.org

Automated program transformation

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

Different array parameters of a function refers to different physical quantities. Each element of the array represents a compute state in
a corresponding grid point. Thus, different array parameters point to different memory locations and do not alias.

However, the C language turns accesses to arrays of pointers into sequences of two dereference statements that inhibits accurate alias
analysis.

A demand-driven source-to-source transformation in SAPFOR aimed at splitting small arrays of pointers into independent variables.
Each element of the original array-parameter results in an independent parameter of a pointer type, hereafter we can apply the restrict
qualifier.

1. Automated replacement of an array-parameter in a function:

void foo(state_t **ss) {

#pragma spf transform replace(ss) nostrict

 /* accesses to ss[0] and ss[1] */

}

2. Automated replacement of the calling function:

void bar(state_t **ss) {

#pragma spf transform replace with(foo_spf0)

 foo(ss);

}

/* Replacement for void foo(state_t **ss) */

void foo_spf0(state_t *ss_0, state_t *ss_1) {

#pragma spf transform metadata \

 replace(foo, { .0 = ss_0, .1 = ss_1})

 /* accesses to ss_0 and ss_1 */

}

void bar() {

 foo_spf0(ss[0], ss[1]);

}

28 | 32 dvm-system.org

Program parallelization summary

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

The original and resulting programs total 10000 and 21450 lines of code correspondingly.

Static (1 min. 42 sec.) ana dynamic (6 min. 49 sec., slowdown 2045 times) analysis were applied

Manual transformations were applied to enable data partitioning and offloading computation to GPU:

 array delinearization,
 replacement of indirect function calls with direct ones,
 replacement of calls to GSL library functions with a manually written code

Semi-automatic transformations were applied to break data dependencies, to obtain perfectly nested loops, to increases static analysis accuracy:

 array of structures replacement,
 function inlinining,
 array expansion,
 loop distribution.

The DVMH specifications were inserted (500 lines of code):

 107 directives to specify parallel loop nests (parallel),
 20 directives to specify execution on GPU (region, get_actual, actual),
 160 data distribution directives (distribute, align, realign, redistribute),
 66 directives to specify function that inherit data distribution from caller function (inherit),
 5 directives to specify access to remote data (remote_access).

29 | 32 dvm-system.org

The execution time (sec.) of 100 iterations on the grid 3000x1528

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

K60 cluster (KIAM RAS):
2 Intel Xeon Gold 6142v4 (16-core)
4 NVIDIA V100 GPU

1 node

30 | 32 dvm-system.org

Performance profiling on 1 and 4 GPUs (grid size 12000x5028)

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

 GPUs improve the program performance and reduces the execution time from 162 second on 1 GPU to
48 second on 4 GPUs (3.3 times).

31 | 32 dvm-system.org

Conclusion
Directive-based programming models help the programmer to accomplish concerns of parallel programming from the complexity, correctness, and
portability and maintainability perspectives.

High-level programming model should be:

 general enough to solve tasks in a wide domain,
 wide and extendable enough to support different parallel architectures,
 implicit enough to hide from the application programmer implementation details,
 explicit enough to allow the compiler to optimize programs for a chosen architectures.

It is feasible to support multiple levels of parallelization in a single parallel programming model.

DVMH programs can be executed without any changes on workstations and HPC systems equipped with multicore CPUs, GPUs, and Intel Xeon Phi
coprocessors.

The performance gains, which are achieved on different architectures, are caused by various optimizations implemented in the DVMH compiler and
runtime system.

At startup the programmer configures desirable resources (the number of cluster nodes, threads and accelerators, the number of processors per node as
well as performance of different processing units) the parallel application should utilize.
Thus the best configuration can be selected to improve the efficiency of computational resources utilization in HPC centers.

Development of assistant tools and automated parallelization techniques on top of a high-level programming model may further reduce the effort
required to embed parallelism into the existing application programs.

17th International Conference on Parallel Computing Technologies ▪ Astana ▪ Kazakhstan ▪ 2023

http://dvm-system.org

Thank you for your attention

dvm@keldysh.ru

E-mail URL

