
Automated Parallelization of a
Simulation Method of Elastic Wave Propagation in
Media with Complex 3D Geometry Surface on
High-Performance Heterogeneous Clusters

Nikita Kataev, Alexander Kolganov, Pavel Titov
Moscow State University

Keldysh Institute of Applied Mathematics RAS

Institute of Computational Mathematics and Mathematical Geophysics SB RAS

September 8, 2017 | Nizhni Novgorod

14th International Conference on Parallel Computing Technologies

Parallel Computing Technologies 2017

2 / 20 dvm-system.org

How to simplify parallel programming?
 Program parallelization is the process of transforming a computer

program in order to tap the full potential of parallel computers
(multi-core or heterogeneous computational systems, etc.). This
implies either rewriting of a program in a special language or
inserting special directives.

 Auto-parallelization is a compiler optimization of a computer

program in order to utilize multiple processors simultaneously, for
example, in a shared-memory multiprocessor (SMP or NUMA)
machine.

 Semi-automatic parallelization is a compiler optimization of a
computer program in order to utilize multiple processors
simultaneously which requires the user to provide the vital
information about the program or to perform some
transformations manually.

3 / 20 dvm-system.org

Parallel programming tools

MPI, SHMEM, pThread, CUDA, OpenCL

DVM, XcalableACC

SAPFOR

OpenMP, OpenACC

Parawise

4 / 20 dvm-system.org

DVM System

 was developed in Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences

 means
Distributed Virtual Memory
Distributed Virtual Machine

 includes two programming languages which are the

extensions of standard C and Fortran languages by
parallelism specifications: C DVMH and Fortran DVMH​

 allows to create efficient parallel programs (DVMH-
programs) for heterogeneous computational clusters

5 / 20 dvm-system.org

DVM System components

 Fortran DVMH compiler

 C DVMH compiler

 DVMH runtime system library

 Tools for DVMH program functional debugging

 Tools for DVMH program performance debugging

6 / 20 dvm-system.org

DVM System languages

C DVMH = C 99 language + pragmas​
Fortran DVMH = Fortran 95 language + special comment​s

 Special comments and pragmas are high-level specifications of parallelism in

terms of a sequential program.

 Specifications of a low-level data transfer and synchronization are absent in
a source code.

 Programming is accomplished in a sequential style.

 A normal compiler neglects specifications of parallelism.

 The same program is suited for sequential and for parallel execution.

7 / 20 dvm-system.org

Semi-automatic parallelization with SAPFOR

Analysis
Determine traits of a sequential program which are
essential for its parallelization: data dependencies.

Auto

Identify in a static and dynamic
ways privatizable, induction and

reduction variables, data
dependencies and dependence

vectors.

Determine and perform an optimal sequence of transform
passes to obtain a sequential program that can be parallelized

efficiently.

Transformation

Manual

Manual

Auto

Exploit
 parallelism

 The system is focused on cost reduction of manual program parallelization for
heterogeneous computational clusters.

 The parallelism exploitation in an automatic way relies on semi-automatic
analysis techniques.

 The system interacts with a user in terms of a sequential program.

8 / 20 dvm-system.org

Simulation Method of Elastic Wave Propagation
in Media with Complex 3D Geometry Surface

 This is related to the solution of equations of elasticity theory in the
case of 3D medium.

 Transformation of a curvilinear grid, 2D-section

9 / 20 dvm-system.org

Program exploration with SAPFOR

In DVMH version of proposed algorithm the
number of private variables within a single loop
amounts to 53.
The system is also useful to check DVMH
specifications of parallelism.

 ~ 3000 lines of code in Fortran 95, > 100 allocatable arrays, > 90 loops

10 / 20 dvm-system.org

 Distribution of array elements on the processors:
directives distribute / align

 Mapping of the loop iterations on the processors in accordance with data distribution:
directive parallel

 Organization of the efficient access to remote data located on other processors:
 clauses shadow / across / remote

 Organization of the efficient execution of reduction operations which are global
operations on the data located on different processors:

clause reduction: max/min/sum/maxloc/minloc/…

 Specification of the regions which are special constructions of the DVMH languages.
These constructions consist of sequential parts of code and parallel loops. The regions
can be executed on the accelerators:

directive region

 Specification of the actualization directives which control data movement between a
memory of CPU and memories of accelerators:

directives actual / get_actual

Parallelism exploitation with DVM

11 / 20 dvm-system.org

Data distribution

double precision, allocatable::

 & dq1_dx(:,:,:),dq2_dx(:,:,:),dq3_dx(:,:,:),

 & dq1_dy(:,:,:),dq2_dy(:,:,:),dq3_dy(:,:,:),

 & dq1_dz(:,:,:),dq2_dz(:,:,:),dq3_dz(:,:,:),

 ...

!DVM$ DISTRIBUTE dq1_dx(BLOCK, BLOCK, *)

!DVM$ ALIGN (i,j,k) WITH dq1_dx(i,j,k)::dq2_dx, dq3_dx, dq1_dy, dq2_dy

!DVM$ ALIGN (i,j,k) WITH dq1_dx(i,j,k)::dq3_dy, dq1_dz, dq2_dz, dq3_dz

 ...

 allocate(

 & dq1_dx(2*N_down_x-3:2*N_up_x+3,2*N_down_y-3:2*N_up_y+3,

 & 2*N_down_z-3:2*N_up_z+3),

 & dq2_dx(2*N_down_x-3:2*N_up_x+3,2*N_down_y-3:2*N_up_y+3,

 & 2*N_down_z-3:2*N_up_z+3),

 & dq3_dx(2*N_down_x-3:2*N_up_x+3,2*N_down_y-3:2*N_up_y+3,

 & 2*N_down_z-3:2*N_up_z+3),

 ...)

Distribution of allocatable arrays

Distribution for any number of processors

Memory allocations by normal Fortran statements

12 / 20 dvm-system.org

Loop mapping

!DVM$ PARALLEL (k,j,i) on amu(i,j,k), PRIVATE(

!DVM$& dc1Ux_dq1,dc1Ux_dq2,dc1Ux_dq3,dc1Vy_dq1,dc1Vy_dq2,dc1Vy_dq3,

!DVM$& dc1Wz_dq1,dc1Wz_dq2,dc1Wz_dq3,dSxx_dx,dcUy_dq1,dcUy_dq2,

 ...)

 do k = k_DOWN, k_UP

 do j = j_DOWN, j_UP

 do i = i_DOWN, i_UP

 ...

!DVM$ PARALLEL (k,j,i) ON X(2*i,2*j,2*k),

!DVM$& REDUCTION(MINLOC(amax,newSources,3))

 do k=N_down_z,N_up_z

 do j=N_down_y,N_up_y

 do i=N_down_x,N_up_x

 if(((X(2*i,2*j,2*k)-x0)**2 +

 & (Y(2*i,2*j,2*k)-y0)**2 +

 & (Z(2*i,2*j,2*k)-z0)**2 < amax)) then

 ...

Privitizable and reduction variables are discovered by SAPFOR, so there is no trouble to add
the necessary clauses (PRIVATE and REDUCTION)

13 / 20 dvm-system.org

Organization of access to remote data

!DVM$ PARALLEL (k,j,i) on amu(i,j,k), PRIVATE(

!DVM$& dc1Ux_dq1,dc1Ux_dq2,dc1Ux_dq3,dc1Vy_dq1,dc1Vy_dq2,dc1Vy_dq3,

!DVM$& dc1Wz_dq1,dc1Wz_dq2,dc1Wz_dq3,dSxx_dx,dcUy_dq1,dcUy_dq2,

 ...)

 do k = k_DOWN, k_UP

 do j = j_DOWN, j_UP

 do i = i_DOWN, i_UP

 dc1Ux_dq1 =

 ...

 & 0.25d0*rdd*((alambda(i+1,j,k)+2.0d0*amu(i+1,j,k))*

 & dq2_dx(2*i+2,2*j,2*k)*(U(i+1,j+1,k)-U(i+1,j-1,k)) -

 & (alambda(i-1,j,k)+2.0d0*amu(i-1,j,k))*

 & dq2_dx(2*i-2,2*j,2*k)*(U(i-1,j+1,k)-U(i-1,j-1,k))) +

 ...

Dynamic control of DVMH directives proved to be useful for functional debugging of program
./dvm fpdeb M_S_4_double_xy.for
./dvm err M_S_4_double_xy

*** DYNCONTROL *** : Loop(No(46), Iter(0)), Loop(No(54), Iter(1,2,2)).
 Access to non-local element dq2 _dx(2 * i + 2,2 * j,2 * k)
 File: M_S_4_double_xy.for Line: 1710

14 / 20 dvm-system.org

!DVM$ SHADOW(1:1, 1:1, 1:2) :: U,V,W

!DVM$ SHADOW(2:2, 2:2, 2:2) :: dq1_dx,dq2_dx, dq3_dx, dq1_dy, dq2_dy

!DVM$ SHADOW(2:2, 2:2, 2:2) :: dq3_dy, dq1_dz, dq2_dz, dq3_dz,X,Y,Z

 ...

Just extend the shadow edges to access 2 remote elements of the array (1 by default).

!DVM$ PARALLEL (k,j,i) on amu(i,j,k), PRIVATE(

!DVM$& dc1Ux_dq1,dc1Ux_dq2,dc1Ux_dq3,dc1Vy_dq1,dc1Vy_dq2,dc1Vy_dq3,

!DVM$& dc1Wz_dq1,dc1Wz_dq2,dc1Wz_dq3,dSxx_dx,dcUy_dq1,dcUy_dq2,

 ...)

 do k = k_DOWN, k_UP

 do j = j_DOWN, j_UP

 do i = i_DOWN, i_UP

 dc1Ux_dq1 =

 ...

 & 0.25d0*rdd*((alambda(i+1,j,k)+2.0d0*amu(i+1,j,k))*

 & dq2_dx(2*i+2,2*j,2*k)*(U(i+1,j+1,k)-U(i+1,j-1,k)) -

 & (alambda(i-1,j,k)+2.0d0*amu(i-1,j,k))*

 & dq2_dx(2*i-2,2*j,2*k)*(U(i-1,j+1,k)-U(i-1,j-1,k))) +

 ...

Organization of access to remote data

15 / 20 dvm-system.org

Specification of computational regions

!DVM$ PARALLEL (k,j,i) on amu(i,j,k), PRIVATE(

!DVM$& dc1Ux_dq1,dc1Ux_dq2,dc1Ux_dq3,dc1Vy_dq1,dc1Vy_dq2,dc1Vy_dq3,

!DVM$& dc1Wz_dq1,dc1Wz_dq2,dc1Wz_dq3,dSxx_dx,dcUy_dq1,dcUy_dq2,

 ...)

 do k = k_DOWN, k_UP

 do j = j_DOWN, j_UP

 do i = i_DOWN, i_UP

 dc1Ux_dq1 =

 ...

 & 0.25d0*rdd*((alambda(i+1,j,k)+2.0d0*amu(i+1,j,k))*

 & dq2_dx(2*i+2,2*j,2*k)*(U(i+1,j+1,k)-U(i+1,j-1,k)) -

 & (alambda(i-1,j,k)+2.0d0*amu(i-1,j,k))*

 & dq2_dx(2*i-2,2*j,2*k)*(U(i-1,j+1,k)-U(i-1,j-1,k))) +

 ...

 end do

 end do

 end do

!DVM$ END REGION

!DVM$ REGION

Now the program may be executed on a multiprocessor or on other devices (GPU, Xeon Phi)

16 / 20 dvm-system.org

Comparison of DVMH and MPI programs

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 2 4 8 10 20 40

A
cc

el
er

at
io

n
 c

o
m

p
ar

ed
 t

o
 M

P
I

p
ro

gr
am

Number of involved K100 nodes (2x Xeon X5670 + 2 GPU Tesla C2050)

MPI DVM->MPI DVM->MPI/OMP DVM->MPI/OMP/CUDA

17 / 20 dvm-system.org

Results

 ~ 3000 lines of code in fixed source form in Fortran 95
 > 100 allocatable arrays, > 90 loops

 79 DVM directives have been placed
 1 day for parallelization and 2 days to obtain results
 Parallel execution on heterogeneous computational cluster with GPU
 In total, we were able to use 480 CPU cores and 80 GPUs (40 nodes of K100),

the size of the problem in this case was approximately of 1000 GB
 Almost linear acceleration of DVMH program execution:

strong and weak scaling

 Source code https://bitbucket.org/dvm-system/elastic-wave-3d

 SEQ_VER contains a sequential program
 MPI_VER contains a parallel program based on MPI
 DVMH_VER contains a parallel program based on DVMH

https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d
https://bitbucket.org/dvm-system/elastic-wave-3d

dvm-system.org

SAPFOR development suit: future
‒ interactive , iterative and incremental parallelization

Interactive Automatic

Supercomputer «Lomonosov»
http://parallel.ru/cluster/superinfo

...
... ...

Program parallelization relies on the ability to identify a sequence of analysis and transform
passes to obtain a computer program which effectively taps full potential of parallel computers.

18 / 20

Analysis
Determine traits of a sequential program which are
essential for its parallelization: hot spots and data

dependencies.

Auto

Identify in a static and dynamic
ways privatizable, induction and

reduction variables, data
dependencies and dependence

vectors.

Determine and perform an optimal sequence of transform
passes to obtain a sequential program that can be parallelized

efficiently.

Transformation

Auto

 Perform the specified single

transform pass.

Auto/
Manual

Specify a single transform pass
which consists of a set of basic

transformations.

Manual

 Auto Manual

Exploit
 parallelism

19 / 20 dvm-system.org

Advanced profiling capability to
identify fragments of a source
code suitable for parallelization.

Semi-automatic search of a sequence of
analysis and transform passes to resolve
parallelization issues.

Automatic execution of the
most frequent transformations.

SAPFOR development suit: future

Visual assistance tool to provide
interaction with a user.

http://dvm-system.org
dvm@keldysh.ru

Thank you for attention

