
Parallelization of NAS NPB3.3.1 tests on Fortran-DVMH for Intel

Xeon Phi coproccessor
1

V.F. Aleksahin, V.A. Bakhtin, O.F. Zhukova, A.S. Kolganov, V.A. Krukov,

I.P. Ostrovskaya, N.V. Podderugina, M.N. Pritula, O.A. Savitskaya

Keldysh Institute of Applied Mathematics RAS

The article analyzes the performance of NAS benchmarks from NPB 3.3.1 package (EP, MG, BT, SP,

LU) on cluster nodes of different architecture using multi-core universal processors, NVidia graphics

accelerators and Intel coprocessors. Characteristics of the tests developed in high-level Fortran-DVMH

language (hereafter referred to as FDVMH), and their implementations in other languages are

compared. The impact of different optimizations of FDVMH NAS benchmarks necessary for their

effective work on Intel Xeon Phi coprocessor is researched. The results of their execution with

simultaneous use of all cores of CPU, GPU and Intel Xeon Phi coprocessor are presented.

1. Introduction

In recent years more and more computational clusters whose nodes contain attached

accelerators of different types in addition to universal multi-core processors are emerged.

Most of them are Nvidia graphics processors and Intel Xeon Phi coprocessors. In the Top500

list [1] of the most powerful supercomputers of the world published in November, 2014, 75

computers have accelerators, 50 computers from them have NVIDIA accelerators, 25 – Intel.

The combination of NVidia and Intel Xeon Phi accelerators is used in four computers. This

tendency significantly complicates the process of cluster programming due to the requirement

to know good several programming models and languages at once. Traditional approach is to

use MPI technology for job distribution between cluster nodes, and then to use OpenMP,

CUDA, OpenCL or OpenACC technologies to load all the cores of central and graphics

processors. Therefore to develop the program for a supercomputer it is necessary to know

exactly its architecture.

To simplify programming of distributed computing systems high-level programming

languages based on the extension of standard languages by directives, such as HPF [2],

Fortran-DVM [3,4], C-DVM [3,5] have been proposed. Programming models and appropriate

directive-based extensions for programming languages such as OpenACC [5] и OpenMP 4.0

[6] have been also proposed to simplify exploiting of accelerators.

The parallelization of the loops without dependencies on graphic processors (GPUs)

and coprocessors does not usually expose great ideological problems, whether it would be

manual parallelization or with use of high-level tools because GPU’s array-parallel

architecture is well suitable for processing. When the loops with dependencies are

parallelized the following problems arise: limited support of synchronization of execution

streams on GPU, model of GPU global memory consistency, necessity to synchronize

OpenMP threads on the coprocessor for pipeline organization.

2. Review of parallel architectures

In this chapter the following architectures are considered: central processor on the

example of Intel Ivy Bridge-EP [7], Xeon Phi coprocessor (MIC – Many Integrated Cores) [8]

on the example of Knights Corner and Nvidia Kepler GPU [9] on the example of GK110.

1
 The research was supported by grants of Russian Foundation for Basic Rsearch No. 13-07-00580, 14-01-

00109, 14-07-31321_mol_ and Presidium of Russian Academy of Sciences, Programs №15, №16 and №18.

2.1. Архитектура Ivy Bridge-EP architecture

In the most complicated modification of this architecture three units including four CPU

cores and a portion of third level cache memory of 2.5 MB per core are used. The doubled

ring bus provides an interaction between units inside a chip, and multiplexers allow to pass

the commands to the core they are addressed to. The external bus QPI (Quick Path

Interconnect) used for the processor interconnection and connection with chipset works at the

speed up to 9.6 GT/sec. The built-in PCI Express controller provides functioning of 40 lines

of third generation. Two memory controllers are provided in 12-core chip, each of them

supports work of memory up to DDR3-1866 in dual-channel mode.

There are SSE (Streaming SIMD Extensions) registers and AVX (Advanced Vector

Extensions) registers at this architecture. SSE includes in processor architecture eight 128-bit

registers and a set of instructions for operating with scalar and packed data types. Advantage

in performance is reached in the case if it is necessary to perform the same sequence of

operations with different data. The computational process is parallelized between data by SSE

unit. AVX provides different improvings, new instructions and new encoding scheme of

machine codes:

 Width of SIMD vector registers is increased from 128 to 256 bits. The existing 128-bit

SSE instructions use a low half of new 256-bit registers, without changing a high part.

For operating with these registers new 256-bit AVX instructions are added. It is

possible to extend SIMD vector registers up to 512 or 1024 bits in the future;

 There are no requirements to align operands in the memory for most of new

instructions. However it is recommended to oversee an alignment with the operand

size, in order to avoid the considerable performance decrease;

 The set of AVX instructions contains the analogs of 128-bit SSE instructions for real

numbers. But unlike originals, saving of 128-bit result will nullify the high half of

256-bit register. 128-bit AVX instructions keep other advantages of AVX, such as

new coding scheme, three-operand syntax and not aligned access to the memory.

2.2. Knights Corner architecture

Up to 61 x86 cores with large 512-bit vector modules (containing 512-bit AVX registers)

can be integrated in the coprocessor of this architecture. They have more than 1 GHz

frequency and provide the speed of double precision computations more than 1 TFlops. They

are located on two-slot PCI Express card with a special firmware on Linux base. Intel Xeon

Phi contains up to 16 Gbytes of GDDR5 memory. Certainly, so constructed coprocessors

aren't designed for processing of main tasks with which the processors of Xeon E family cope.

They succeed in parallel tasks capable to use a large number of cores for maximum effect.

Main characteristics are:

 X86 architecture with support of 64 bits, four threads per a core and up to 61 cores per

coprocessor;

 512-bit AVX instructions, 512 Kbytes of L2 cache per a core (up to 30,5 MB per

whole Xeon Phi card);

 Linux support (special version for Phi), up to 16 Gbytes of GDDR5 memory per card.

It is possible to note that even the highest Intel Xeon Phi model has much less cores, than

usual graphic processor. But it is impossible to compare MIC core with CUDA core in one to

one ratio because one core of Intel Xeon Phi is four-thread module with 512-bit SIMD.

2.3. GK110 architecture

Kepler GK110 chip was developed first of all to expand Tesla model range. Its goal is to

become the most fast parallel microprocessor in the world. GK110 chip not only exceeds in

performance the Fermi chip of previous generation, but also consumes much less energy.

GK110 in the maximum configuration consists of 15 stream multiprocessors called SMX, and

six 64-bit memory controllers.

Each stream SMX multiprocessor contains 192 cuda-cores for single precision operations,

64 cuda-cores for double precision operations, 32 special functional units and 32 units for

data loading and saving, four schedulers. For all SMX on GPU one common second level

cache of 1.5 MB size is provided. Also each SMX has its own first level cache of 64 KB size.

To use large capacities of GPU, it is necessary to map computationally independent code

fragments on the groups of independent virtual threads. Each group will execute the same

command with different input data. To control the group of virtual threads it is necessary to

integrate them in the blocks of fixed size. These blocks in CUDA architecture are called cuda-

blocks.

Such block has three dimensions. All blocks are integrated in a grid of blocks which can

also have three dimensions. Eventually, each cuda-block will be processed by some stream

multiprocessor, and each virtual thread will be matched with physical one. Minimum unit of

parallelism on GPU is warp – the group of 32 independent threads which are physically

executed in parallel and synchronously.

3. Review of NAS betchmarks

NAS Parallel Benchmarks [10] are suite of benchmarks allowing to estimate performance

of supercomputers. The benchmarks were developed and are supported in NASA Advanced

Supercomputing (NAS) Division (earlier NASA Numerical Aerodynamic Simulation

Program) in NASA Ames Research Center. The NPB 3.3 package consists of 11 tests. The

parallelization of EP, MG, BT, LU, SP tests on the CPU and coprocessors in DVMH [11]

model is considered in the article. Parallel versions for clusters with use of Fortran-DVM

language, and also parallel versions for graphic processors with use of Fortran-DVMH

language were developed earlier. The tests are:

 MG (Multi Grid) – the test calculates approximated solution of three-dimensional partial

differential Poisson equation ("three-dimensional grid") on NxNxN grid with periodic

boundary conditions (the function is equal 0 on the boundary except of given 20 points).

The grid size N is determined by the test class. It tests possibilities of the system to

perform both long and short data transfers.

 EP (Embarrassingly Parallel) - the test calculates an integral by Monte-Carlo method. It is

intended for measurement of primary computational capacity of floating arithmetics. This

test can be useful if the problems using Monte-Carlo method will be solved on a cluster.

The algorithm also takes into account the time of data formatting and output.

 BT (Block Tridiagonal) – block three-diagonal scheme. The test solves synthetic system

of non-linear differential equations in partial derivatives (three-dimensional system of

Navier-Stokes equations for compressible fluid or gas), using the block three-diagonal

scheme with method of alternating directions.

 SP (Scalar Pentadiagonal) – scalar pentadiagonal. The test solves synthetic system of non-

linear differential equations in partial derivatives (three-dimensional system of Navier-

Stokes equations for compressible fluid or gas), using scalar penta-diagonal scheme.

 LU (Lower-Upper) – decomposition by symmetric method of Gauss-Seidel. The test

solves synthetic system of non-linear differential equations in partial derivatives (three-

dimensional system of Navier-Stokes equations for compressible fluid or gas), using a

method of symmetric successive over relaxation.

4. Mapping of programs on different architectures in DVM system

In 2011 in Keldysh Institute of Applied Mathematics of RAS high level programming

model for support of clusters with graphic accelerators was developed. The model was called

DVMH [11] (DVM for Heterogeneous systems). It is extension of DVM model and allows to

convert DVM program for a cluster to DVMH program for the cluster with graphics

accelerators with little changes.

In 2014 due to appearance of Intel Xeon Phi coprocessors it became necessary to support

them by DVM system.

There are three modes of program execution on Xeon Phi [11] coprocessor:

 Native mode – the program is compiled and executed only on the coprocessor;

 Offload mode – the program is compiled for CPU, some code fragments are compiled

both for CPU and Xeon Phi. These code fragments are marked by special OpenMP 4.0

directives (generally #pragma offload). The program is executed as well as in case of

GPU use: a sequential part – on CPU, and parallel part with special directives – on the

coprocessor. At this mode the same problem, as if GPU is used, arises – data loading and

uploading in own memory of the coprocessor through PCIe. If there is no the coprocessor

in a node, special code fragments will be executed on CPU.

 Symmetric the mode – the same program is compiled separately for CPU and separately

for the coprocessor. The compiled programs are launched simultaneously on the

coprocessor and CPU and can be synchronized by means of MPI technology.

The main mode of execution selected for implementation in DVMH is symmetric mode.

This mode allows to tune balance between CPU and the coprocessor using MPI technology

and to use OpenMP technology for the best loading of the cores inside each device. It is also

possible to launch FDVMH program only on the coprocessor (native mode), using, for

example, one MPI process and maximum quantity of OpenMP threads supported by the

coprocessor.

As a result, parallelizing programs in DVMH model, it isn't necessary to select this or that

architecture, whether it be graphic processors, central processors or Intel Xeon Phi

coprocessors as this model supports usage of all listed architectures both separately, and

simultaneously for the same program.

5. Implementation of Xeon Phi support in FDVMH compiler

The computational region in DVMH program is a fragment of the program with one

entrance and one exit for possible execution on one or several computational devices. The

region may contain several parallel loops. This program fragment is marked by REGION

directive.

The region can be executed on one or several devices: accelerators, CPU, coprocessors.

Any region can be executed on CPU or on the coprocessor. For execution of same region on

different accelerators different additional restrictions can exist for the region. For example, on

CUDA device any region which hasn’t input/output statements or calls of external procedures

can be executed.

It is possible to specify type of the calculator where a region should be executed. The

TARGETS specification is intended for this purpose. Enclosed (statically or dynamically)

regions aren't allowed. DVM arrays are distributed on selected calculators (taking into

account weights and high-speed performance of calculators), undistributed data are replicated.

The iterations of parallel DVM loops inside the region are split between the calculators

selected for the region execution according to the rule of parallel loop mapping, specified in

the parallel loop directive.

5.1. Generation of handlers for parallel loops

Fortran-DVMH compiler converts source program to the parallel program in Fortran

language with function calls of DVMH runtime system (RTS – RunTime System). Besides,

the compiler creates for each source program several additional modules to support execution

of the program regions on GPU using CUDA technology and on CPU and coprocessor using

OpenMP technology.

For each parallel loop from computational region the compiler generates procedure-

handler and a kernel for computations on GPU and also procedure-handler for execution of

this parallel loop on CPU and coprocessor. The handler is a subprogram processing parallel

loop part on certain computational device. Arguments of the handler are the device descriptor

and the parallel loop part.

The handler requests from RTS a portion for execution (the loop boundaries and a step), a

configuration of parallel processing (quantity of threads), an initialization of reduction

variables and other system information. To execute the parts of the loop CUDA handler calls

CUDA kernel, generated in special way, with parameters, received from RTS during

execution. CUDA kernel is executed on the graphic processor, performing computations of

the loop body. To process the loop parts CPU handler uses OpenMP technology for

distribution of computations. It is supposed by default that the computational region can be

executed on architectures of all types which exist at the cluster node, and the compiler

generates handlers for CPU, the coprocessor and CUDA device.

One of the main reasons of deceleration of the programs executed on CPU or on the

coprocessor is a linearization of distributed arrays performed by Fortran-DVMH compiler.

The memory for elements of such arrays is allocated by RTS system. For local section of the

array the memory is allocated on each processor according to data distribution format and

taking into account shadow edges. The compiler replaces ARRAY (I, J, K) references to

elements of distributed arrays by the following references:

BASE(ARRAY_OFFSET+I+C_ARRAY1*J+C_ARRAY2*K),

where BASE – a base for addressing of all distributed arrays; ARRAY_OFFSET – offset of

the array beginning relative to the base; C_ARRAYi – coefficients of addressing of the

distributed array. Such program is worse recognized and optimized by standard Fortran

compilers.

To solve this problem FDVMH compiler by special option can generate the optimized

handlers in order to distributed arrays will be passed to host handlers as assumed shape arrays.

Such approach allows not to convert the references to the arrays in linear form inside host

handlers and essentially increases the program performance on CPU or coprocessor.

5.2. Use of collapse clause

Unlike central processors, which have no more than 24 threads (for newest Intel Xeon E),

Intel Xeon Phi coprocessors can have 244 threads. There are a lot of tasks having not only

one-dimensional loops, but also two-dimensional and three-dimensional. Many of NPB

Benchmarks [9], in particular, are such tasks. OpenMP directive !$OMP PARALLEL FOR,

generated by FDVMH compiler in host handlers, is applied only to the most upper loop of

the nest. If a number of iterations of such loop is less, than a quantity of available threads,

then performance will be decreased.

To optimize the work of host handlers on Xeon Phi it is necessary to generate an

additional COLLAPSE clause in OpenMP directive. COLLAPSE clause allows to distribute

execution of several loops of the nest that allows to use all cores of the coprocessor. The

parameter of this clause is a quantity of nested loops to which it is applied. To apply this

clause to all nested loops is not efficiently as the same thread will process the elements not

lying in a row and in this case there will be more misses in L2 cache.

Static analysis during DVMH program compilation can’t determine a quantity of nested

loops to which COLLAPSE clause can be applied. Therefore during compilation several host

handlers are generated. In each of them COLLAPSE (N) clause is inserted, where N = 1, 2, 3,

… , m, and m is the quantity of loops in the nest. During the program execution RTS selects

the handler which will execute the parallel loop.

A user can set the option –collapsN for DVMH compiler, where N is integer positive

number. Then COLLAPSE(N) clause will be added in OpenMP directive for each parallel

loop in the host handler.

5.3. Loading balance in DVM system

One of the important aspects of DVMH program model functioning is the problem to

map a source program on all parallelism levels and heterogeneous computational devices. The

important tasks of mapping mechanism are a support of correct execution of all constructions

provided by language on heterogeneous computational devices, loading balance between

computational devices, and also selection of optimum method of each code fragment

execution on this or that device. There are several levels of parallelism in DVMH programs:

 Distribution of data and computations on MPI processes. This level is specified by data

distribution and redistribution directives and by specifications of parallel subtasks and

loops. At this level the program is mapped on cluster nodes. Several MPI processes can

exist inside each node, and they can be mapped on CPU cores or coprocessor cores;

 Distribution of data and computations on computational devices at the entrance into

computational region.

 Parallel processing within computational device. This level appears at entrance into

parallel loop inside computational region. At this level the computations are mapped on

OpenMP threads and CUDA architecture.

According to this division in DVMH model there are two levels of balancing between

computational devices: specifying of weight of each MPI process mapped on CPU or

coprocessor cores, and specifying of a ratio of computational capability between cores of

CPU and GPU for each MPI process.

To tune DVMH program performance its recompilation isn’t required. To define a ratio

of MPI processes, user should specify a vector of weighs in the special file with parameters of

DVMH program startup. According to specified weights, RTS will separate data between

MPI processes during the program execution. By default all MPI processes are identical.

To balance loading between CPU and GPU the following mechanisms exist. For all

settings environment variables are used. The user can define required amount of threads on

CPU (or on coprocessor) in OpenMP terms. It is also possible to turn on or turn off a parallel

loop execution on one or several GPUs. To specify CPU and GPU performance two

environment variables are used:

 DVMH_CPU_PERF – relative performance of CPU. There is a possibility to specify

different values of this parameter for different MPI processes executed on CPU cores or

on Intel Xeon Phi coprocessor cores.

 DVMH_CUDAS_PERF – relative performance of GPU. It is set by the list of real

numbers through a space or a comma. The list is circular. It allows not to specify

performances of all GPUs.

Thus, DVM system allows to use efficiently all devices of different architecture attached

to cluster nodes by two-level balancing: specifying of each MPI process weight and

specifying of performance a ratio between OpenMP threads and CUDA devices inside each of

MPI processes.

6. Applying of AVX instructions

Minimum parallelism unit in terms of GPU is warp consisting of 32 independent threads.

When applied programmer writes a parallel program using CUDA program model he himself

defines the warps, integrates them in blocks, and then in grids of blocks, thereby specifying

where and what will be executed in parallel and veсtorially. It is possible to consider that the

minimum size of a vector is equal to 32 elements in GPU architecture. Further problems of

optimization, planning and data loading/uploading will be solved by the NVidia compiler and

GPU hardware.

Minimum parallelism unit of one core of CPU or coprocessor is AVX vector register

which can process 256 or 512 bit of data per one operation correspondently. In this case the

applied programmer works at first with a serial code of the program, and then applies high

level OpenMP directive extensions. And unlike GPU, in the program oriented on the CPU or

the coprocessor there are no explicit specifications of vector operations – the compiler

performs all vectorization job. Therefore there are two methods of efficient parallel program

writing using AVX vector registers:

 to use the compiler or OpenMP directives (for example, "omp simd");

 to use low level commands or AVX instructions (at the level of intrinsic-functions).

The first method is realized not always because the compiler not always can perform

vectorization even if it is possible. Let's consider two versions of the same loop (see Fig. 1).

#if VER1 /*** first version of the loop ***/

 double rhs[5][162][162][162], u[5][162][162][162];

 #define rhs(m,i,j,k) rhs[(m)][(i)][(j)][(k)]

 #define u(m,i,j,k) u[(m)][(i)][(j)][(k)]

#endif

#if VER2 /*** second version of the loop ***/

 double rhs[162][162][162][5], u[162][162][162][5];

 #define rhs(m,i,j,k) rhs[(i)][(j)][(k)][(m)]

 #define u(m,i,j,k) u[(i)][(j)][(k)][(m)]

#endif

#pragma omp parallel for

for(int i = 0; i < Ni; i++)

{

 for(int j = 0; j < Nj; j++)

 {

 for(int k = 0; i < Nk; k++)

 { /*** first group of statements ***/

 rhs(0, i, j, k) = F(u(0, i, j, k), u(0, i+1, j, k));

 rhs(1, i, j, k) = F(u(1, i, j, k), u(1, i-2, j, k));

 rhs(2, i, j, k) = F(u(2, i, j, k), u(2, i, j+1, k));

 rhs(3, i, j, k) = F(u(3, i, j, k), u(3, i, j-1, k));

 rhs(4, i, j, k) = F(u(4, i, j, k), u(4, i+1, j, k+1));

 /***second group of statements ***/

 for (int m = 0; m < 5; m++)

 rhs(m, i, j, k) += F(u(m, i, j, k), u(m, i, j+1, k));

 }

 }

}

Fig.1. Two versions of parallel loop

These loops perform identical computations, but they differ in data location in memory.

In the first version (VER1) the compiler can't vectorize any group of statements as the fastest

indexed dimension is the dimension of parallel loop. In the second version (VER2) the

compiler successfully vectorizes the second group of statements as the fastest indexed

dimension isn't dimension of parallel loop and data along this dimension are located in

memory in a row.

Nevertheless, there are situations when it is favorable to use data location as in the first

version (VER1, Fig. 1). One of such situations is reordering of arrays in previous parallel loop

of the program for the better localization of data. And in order to avoid a deceleration of the

considered loop execution, it is necessary to use AVX vector instructions directly in the

program code.

For the first version (VER1) vectorization of two groups of statements is possible because

data on the fastest dimension of a parallel loop are located in memory in a row. The example

of transformation of one of statements using AVX instructions is shown in Fig. 2.

double rhs[5][162][162][162], u[5][162][162][162];

#pragma omp parallel for

for(int i = 0; i < Ni; i++)

{

 for(int j = 0; j < Nj; j++)

 {

 /*** изменение индексного пространства цикла ***/

 for(int k = 0; i < Nk; k+=8)

 { /*** rhs[0][i][j][k] = u[0][i][j][k] + u[0][i+1][j][k]; ***/

 _mm512_store_pd(&rhs[0][i][j][k],

 _mm512_add_pd(

 _mm512_load_pd(u[0][i][j][k]),

 _mm512_load_pd(u[0][i+1][j][k]

)

);

 }

 }

}

Fig. 2. AVX transformation

In one operation 512-bit AVX command can process 8 elements of double type. Use of

this approach allows to accelerate the program approximately by 8 times. To confirm this fact

one of computationally complex procedures of NPB SP test was implemented in C++

language with use of AVX instructions and without them. The obtained programs were

compiled by Intel compiler with optimization flag -O3.

As a result of the experiment there was obtained the acceleration about 6.3 times in

comparison with the same procedure without use of AVX instructions (see Table 1). It shows

high efficiency of this approach. The possibility to use AVX instructions in Fortran-DVMH

compiler is a subject for further researches.

Table 1. Comparison of runtime of different implementations of compute_rhs procedure from

SP program

 Xeon Phi 240th Xeon Phi 240th + AVX512 SpeedUp

CLASS A 2,9 sec 1,8 sec 1,55

CLASS В 13,4 sec 4,8 sec 2,76

CLASS С 118,1 sec 18,7 sec 6,31

7. Obtained results. Comparing with MPI and OpenMP versions of NASA

benchmarks.

To estimate parallelization efficiency of the programs using DVMH model the runtimes

of Fortran-DVMH versions of NAS benchmarks (MG, EP, SP, BT and LU from NPB 3.3

package) were compared with runtimes of standard versions of the tests using MPI and

OpenMP technologies. There is single version of parallel FDVMH program for each of the

tests which can be compiled for each of the architectures: CPU, coprocessor or GPU. All

optimizations applied to the tests were described in article [12].

Тестирование производилось на сервере с установленными на нем 6-ядерным (12-

поточным) процессором Intel Xeon E5-1660v2 c 24Гб оперативной памяти типа DDR3,

сопроцессором Intel Xeon Phi 5110P c 8Гб оперативной памяти типа GDDR5 и ГПУ

NVidia GTX Titan c 6Гб оперативной памяти типа GDDR5. Основные результаты

представлены в Таблице 2.

Testing was performed on the server with 6-core (12-threads) Intel Xeon E5-1660v2

processor with 24 GB of DDR3 RAM, Intel Xeon Phi 5110P coprocessor with 8 GB of

GDDR5 RAM and NVidia GTX Titan GPU with 6 GB of GDDR5 RAM. The main results

are shown in Table 2.

Table 2. Runtimes of different versions of NASA tests (in seconds)

Application NAS

A

Fortran-DVMH

Test

Class
Xeon E5 (4-12th) Xeon Phi (64-240th) Xeon

E5

12th

Xeon

Phi

240th

GTX

Titan
Serial MPI OpenMP MPI OpenMP

BT

A 40,7 12,

13

10,2 11,08 11,5 7,8 7,68 2,84

B 166,9 54,

9

43,07 33,1 32,15 32,2 20,9 9,16

C 713,3 223

,1

176,7 119,4 105,7 125 74 31,05

SP

A 28,6 17,

8

14,6 12,03 13,3 15,5 11,6 2,4

B 116,9

4

96,

8

57,1 33,4 38,7 37 27 10,2

C 483,2

4

408

,6

425,2 124,0

3

128,2 174,1 120 3

1

LU

A 35,07 9,6 8,31 15,05 16,5 18,9 33,75 4,18

B 148,5

6

35,

2

31,10 47,01 44,5 77,7 89,8 11,69

C 852,3 291

,4

351,9 162,4 134,2 312,5 192,5 34,32

MG

A 1,06 0,5

7

0,7 0,36 0,22 0,8 0,61 0,13

B 4,96 2,7 3,22 1,7 1,13 3,8 2,8 0,58

C 42,3 25,

7

34,6 10,9 6,39 29,7 15,5 3,36

EP

A 16,73 1,6

3

1,76 0,94 0,89 1,5 0,78 0,48

B 67,33 6,6 7,03 3,94 3,31 5,99 2,99 1,17

C 266,3 26,

1

26,3 14,8 13,31 23,96 11,6 4,27

Acceleration of FDVMH version of EP test in comparison with serial version of the

test executed on one core of CPU is shown in Fig. 3. The test was executed on different

architectures separately, and also in the following combinations: CPU + GPU, CPU +

coprocessor and coprocessor + CPU + GPU. For each configuration the number of MPI

processes and amount of OpenMP threads inside each of the processes is shown in Fig. 3. The

cases marked by red and magenta colors are the cases when loading balance was additionally

used by specifying of weight ratio of all cores of CPU and GPU and weight ratio of MPI

processes mapped on CPU and coprocessor.

As a result, in case of simultaneous use of GPU and CPU we could obtain this test

performance 17% more than its performance only on GPU. At that the ratio of CPU and GPU

performances was set 1: 5,7 correspondently.

When the coprocessor and CPU were used simultaneously we could obtain

performance 30% more than the test performance on one coprocessor. The most favorable

ratio of MPI processes is following: two MPI processes on Xeon Phi and one MPI process on

Xeon E5, and MPI processes have equal weights, or one MPI process on CPU and on

coprocessor, and ratio of the process weights is 1: 2 correspondently.

When all devices attached to the node were used we could obtain performance which is

28% more than EP test performance on GPU and exceeds of the test performance on the

coprocessor by 3.7 times.

Fig. 3. Use of loading balance in DVMH program on the example of EP test, class C

8. Conclusions

As a result of this research the extension of DVM system was implemented to support

Intel Xeon Phi coprocessors. Thus, the important step was made to provide efficient

portability of FDVMH programs when the same parallel program can be executed efficiently

on the clusters of different architecture using multi-core universal processors, graphic

accelerators and Intel Xeon Phi coprocessors. The implemented mapping of DVMH program

on CPU and coprocessor allows to apply many of those optimizations of serial program which

were described in article [14] and allow to map these programs efficiently on graphic

processors.

The runtimes of implemented FDVMH programs given above show that the performance

of MG and LU tests on Intel Xeon Phi accelerator and CPU is low. LU test contains loops

with dependences on more than one dimension. It is possible that the diagonal execution

scheme together with diagonal transformation of arrays by RTS during execution can give the

same effect, as on GPU [13]. This problem is a subject for further researches.

References

1. Top500 List - November 2014. URL: http://top500.org/list/2014/11/ (accessed:

30.11.2014).

2. High Performance Fortran. URL: http://hpff.rice.edu (accessed: 30.11.2014).

3. N.A. Konovalov, V.A. Krukov, A.A . Pogrebtsov, N.V. Podderyugina , Y.L. Sazanov.

Parallel’noe programmirovanie v sisteme DVM. Yazyki Fortran-DVM i C-DVM.[

Parallel programming in the DVM system. Fortran-DVM and C-DVM languages.] //

Proceedings of international conference "Parallel Computations and Control

Problems" (PACO'2001), Moscow, October 2 – 4, 2001, P. 140-154

4. OpenACC. URL: http://www.openacc-standard.org/ (accessed: 30.11.2014).

5. OpenMP 4.0 Specifications. URL: http://openmp.org/wp/openmp-specifications/

(accessed: 30.11.2014).

6. Intel Ivy Bridge-EP architecture.

URL: http://www.intel.ru/content/www/ru/ru/secure/intelligent-

systems/privileged/ivy-bridge-ep/xeon-e5-1600-2600-v2-bsdl.html

(accessed: 30.11.2014).

7. Intel MIC architecture. URL: https://software.intel.com/mic-developer (accessed:

30.11.2014)

8. Nidia Kepler architecture. URL: http://www.nvidia.com/content/PDF/kepler/NVIDIA-

kepler-GK110-Architecture-Whitepaper.pdf (accessed: 30.11.2014)

9. NAS Parallel Benchmarks. URL: http://www.nas.nasa.gov/publications/npb.html

(accessed: 30.11.2014).

10. Bakhtin V.A, Klinov M.S., Krukov V.A., Podderugina N.V., Pritula M.N.,

Sazanov Yu.L. Rasshirenie DVM-modeli parallel'nogo programmirovaniya dlya

klasterov s geterogennymi uzlami [Extension of the DVM-model of parallel

programming for clusters with heterogeneous nodes]. Vestnik Yuzho-Uralskogo

gosudarstvennogo universiteta. Seriya "Matematicheskoe modelirovanie i

programmirovanie" [Bulletin of South Ural State University. Series: Mathematical

Modeling, Programming & Computer Software]. 2012, No. 18 (277). P 82–92.

11. Intel Xeon Phi programming environment. URL: https://software.intel.com/en-

us/articles/intel-xeon-phi-programming-environment (accessed: 30.11.2014).

12. Aleksahin V.F, Bakhtin V.A, Zhukova O.F., Kolganov A.S., Krukov V.A.,

Podderugina N.V., Pritula M.N., Savitskaya O.A., Shubert A.V. Rasparallelivanie na

graficheskie processory testov NAS NPB3.3.1 na jazyke Fortran DVMH [GPU

parallelization of NPB 3.3 NAS tests on Fortran DVMH language] // Proceedings of

international conference "Parallel Computational Technologies (PCT’2014)" / Rostov-

na-Donu, 31.03 - 3.04 2014/ Chelyabinsk: Publishing center SUSU, 2014. P. 30-41.

13. Bakhtin V.A. Otobrazhenie na klastery s graphicheskimi processorami DVMH-

programm s regulyarnymi zavisimostyami po dannym [Mapping DVMH-programs

with regular data dependencies on clusters with graphics processors] / Bakhtin V.A.,

Kolganov A.S., Krukov V.A., Podderyugina N.V., Pritula M.N. // Vestnik Yuzhno-

Ural’skogo gosudarstvennogo universiteta, seriya “Vychislitel’naya matematika i

informatika”. 2013. V.2 No. 4, P. 44–56.

14. Arunmoezhi Ramachandran, Jerome Vienne, Rob Van Der Wijngaart, Lars Koesterke,

Ilya Sharapov. "Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon

Phi". In Proceedings of the 42nd International Conference on Parallel Processing,

2013, pp. 736-743

