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The article analyzes the performance of NAS benchmarks from NPB 3.3.1 package (EP, MG, BT, SP, 

LU) on cluster nodes of different architecture using multi-core universal processors, NVidia graphics 

accelerators and Intel coprocessors. Characteristics of the tests developed in high-level Fortran-DVMH 

language (hereafter referred to as FDVMH), and their implementations in other languages are 

compared. The impact of different optimizations of FDVMH NAS benchmarks necessary for their 

effective work on Intel Xeon Phi coprocessor is researched. The results of their execution with 

simultaneous use of all cores of CPU, GPU and Intel Xeon Phi coprocessor are presented. 

1. Introduction 

In recent years more and more computational clusters whose nodes contain attached 

accelerators of different types in addition to universal multi-core processors are emerged. 

Most of them are Nvidia graphics processors and Intel Xeon Phi coprocessors. In the Top500 

list [1] of the most powerful supercomputers of the world published in November, 2014, 75 

computers have accelerators, 50 computers from them have NVIDIA accelerators, 25 – Intel. 

The combination of NVidia and Intel Xeon Phi accelerators is used in four computers. This 

tendency significantly complicates the process of cluster programming due to the requirement 

to know good several programming models and languages at once. Traditional approach is to 

use MPI technology for job distribution between cluster nodes, and then to use OpenMP, 

CUDA, OpenCL or  OpenACC technologies to load all the cores of central and graphics 

processors. Therefore to develop the program for a supercomputer it is necessary to know 

exactly its architecture. 

To simplify programming of distributed computing systems high-level programming 

languages based on the extension of standard languages by directives, such as HPF [2], 

Fortran-DVM [3,4], C-DVM [3,5] have been proposed. Programming models and appropriate 

directive-based extensions for programming languages such as OpenACC [5] и OpenMP 4.0 

[6] have been also proposed to simplify exploiting of accelerators. 

The parallelization of the loops without dependencies on graphic processors (GPUs) 

and coprocessors does not usually expose great ideological problems, whether it would be 

manual parallelization or with use of high-level tools because GPU’s array-parallel 

architecture is well suitable for processing. When the loops with dependencies are 

parallelized the following problems arise: limited support of synchronization of execution 

streams on GPU, model of GPU global memory consistency, necessity to synchronize 

OpenMP threads on the coprocessor for pipeline organization. 

2. Review of parallel architectures 

In this chapter the following architectures are considered: central processor on the 

example of Intel Ivy Bridge-EP [7], Xeon Phi coprocessor (MIC – Many Integrated Cores) [8] 

on the example of Knights Corner and Nvidia Kepler GPU [9] on the example of GK110. 
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2.1. Архитектура Ivy Bridge-EP architecture 

In the most complicated modification of this architecture three units including four CPU 

cores and a portion of third level cache memory of 2.5 MB per core are used. The doubled 

ring bus provides an interaction between units inside a chip, and multiplexers allow to pass 

the commands to the core they are addressed to. The external bus QPI (Quick Path 

Interconnect) used for the processor interconnection and connection with chipset works at the 

speed up to 9.6 GT/sec. The built-in PCI Express controller provides functioning of 40 lines 

of third generation. Two memory controllers are provided in 12-core chip, each of them 

supports work of memory up to DDR3-1866 in dual-channel mode. 

There are SSE (Streaming SIMD Extensions) registers and AVX (Advanced Vector 

Extensions) registers at this architecture. SSE includes in processor architecture eight 128-bit 

registers and a set of instructions for operating with scalar and packed data types. Advantage 

in performance is reached in the case if it is necessary to perform the same sequence of 

operations with different data. The computational process is parallelized between data by SSE 

unit. AVX provides different improvings, new instructions and new encoding scheme of 

machine codes: 

 Width of SIMD vector registers is increased from 128 to 256 bits. The existing 128-bit 

SSE instructions use a low half of new 256-bit registers, without changing a high part. 

For operating with these registers new 256-bit AVX instructions are added. It is 

possible to extend SIMD vector registers up to 512 or 1024 bits in the future; 

 There are no requirements to align operands in the memory for most of new 

instructions. However it is recommended to oversee an alignment with the operand 

size, in order to avoid the considerable performance decrease; 

 The set of AVX instructions contains the analogs of 128-bit SSE instructions for real 

numbers. But unlike originals, saving of 128-bit result will nullify the high half of 

256-bit register. 128-bit AVX instructions keep other advantages of AVX, such as 

new coding scheme, three-operand syntax and not aligned access to the memory. 

2.2.  Knights Corner architecture 

Up to 61 x86 cores with large 512-bit vector modules (containing 512-bit AVX registers) 

can be integrated in the coprocessor of this architecture. They have more than 1 GHz 

frequency and provide the speed of double precision computations more than 1 TFlops. They 

are located on two-slot PCI Express card with a special firmware on Linux base. Intel Xeon 

Phi contains up to 16 Gbytes of GDDR5 memory. Certainly, so constructed coprocessors 

aren't designed for processing of main tasks with which the processors of Xeon E family cope. 

They succeed in parallel tasks capable to use a large number of cores for maximum effect. 

Main characteristics are: 

 X86 architecture with support of 64 bits, four threads per a core and up to 61 cores per 

coprocessor; 

 512-bit AVX instructions, 512 Kbytes of  L2 cache per a core (up to 30,5 MB per 

whole Xeon Phi card); 

 Linux support (special version for Phi), up to 16 Gbytes of GDDR5 memory per card. 

It is possible to note that even the highest Intel Xeon Phi model has much less cores, than 

usual graphic processor. But it is impossible to compare MIC core with CUDA core in one to 

one ratio because one core of Intel Xeon Phi is four-thread module with 512-bit SIMD. 

2.3.  GK110 architecture 

Kepler GK110 chip was developed first of all to expand Tesla model range. Its goal is to 

become the most fast parallel microprocessor in the world. GK110 chip not only exceeds in 



performance the Fermi chip of previous generation, but also consumes much less energy. 

GK110 in the maximum configuration consists of 15 stream multiprocessors called SMX, and 

six 64-bit memory controllers. 

Each stream SMX multiprocessor contains 192 cuda-cores for single precision operations, 

64 cuda-cores for double precision operations, 32 special functional units and 32 units for 

data loading and saving, four schedulers. For all SMX on GPU one common second level 

cache of 1.5 MB size is provided. Also each SMX has its own first level cache of 64 KB size. 

To use large capacities of GPU, it is necessary to map computationally independent code 

fragments on the groups of independent virtual threads. Each group will execute the same 

command with different input data. To control the group of virtual threads it is necessary to 

integrate them in the blocks of fixed size. These blocks in CUDA architecture are called cuda-

blocks. 

Such block has three dimensions. All blocks are integrated in a grid of blocks which can 

also have three dimensions. Eventually, each cuda-block will be processed by some stream 

multiprocessor, and each virtual thread will be matched with physical one. Minimum unit of 

parallelism on GPU is warp – the group of 32 independent threads which are physically 

executed in parallel and synchronously. 

3. Review of NAS betchmarks 

NAS Parallel Benchmarks [10] are suite of benchmarks allowing to estimate performance 

of supercomputers. The benchmarks were developed and are supported in NASA Advanced 

Supercomputing (NAS) Division (earlier NASA Numerical Aerodynamic Simulation 

Program) in NASA Ames Research Center. The NPB 3.3 package consists of 11 tests. The 

parallelization of EP, MG, BT, LU, SP tests on the CPU and coprocessors in DVMH [11] 

model is considered in the article. Parallel versions for clusters with use of Fortran-DVM 

language, and also parallel versions for graphic processors with use of Fortran-DVMH 

language were developed earlier. The tests are: 

 MG (Multi Grid) – the test calculates approximated solution of three-dimensional partial 

differential Poisson equation ("three-dimensional grid") on NxNxN grid with periodic 

boundary conditions (the function is equal 0 on the boundary except of given 20 points). 

The grid size N is determined by the test class. It tests possibilities of the system to 

perform both long and short data transfers. 

 EP (Embarrassingly Parallel) - the test calculates an integral by Monte-Carlo method. It is 

intended for measurement of primary computational capacity of floating arithmetics. This 

test can be useful if the problems using Monte-Carlo method will be solved on a cluster. 

The algorithm also takes into account the time of data formatting and output. 

 BT (Block Tridiagonal) – block three-diagonal scheme. The test solves synthetic system 

of non-linear differential equations in partial derivatives (three-dimensional system of 

Navier-Stokes equations for compressible fluid or gas), using the block three-diagonal 

scheme with method of alternating directions. 

 SP (Scalar Pentadiagonal) – scalar pentadiagonal. The test solves synthetic system of non-

linear differential equations in partial derivatives (three-dimensional system of Navier-

Stokes equations for compressible fluid or gas), using scalar penta-diagonal scheme. 

 LU (Lower-Upper) – decomposition by symmetric method of Gauss-Seidel. The test 

solves synthetic system of non-linear differential equations in partial derivatives (three-

dimensional system of Navier-Stokes equations for compressible fluid or gas), using a 

method of symmetric successive over relaxation. 



4. Mapping of programs on different architectures in DVM system 

In 2011 in Keldysh Institute of Applied Mathematics of RAS high level programming 

model for support of clusters with graphic accelerators was developed. The model was called 

DVMH [11] (DVM for Heterogeneous systems). It is extension of DVM model and allows to 

convert DVM program for a cluster to DVMH program for the cluster with graphics 

accelerators with little changes. 

In 2014 due to appearance of Intel Xeon Phi coprocessors it became necessary to support 

them by DVM system. 

There are three modes of program execution on Xeon Phi [11] coprocessor: 

 Native mode – the program is compiled and executed only on the coprocessor; 

 Offload mode – the program is compiled for CPU, some code fragments are compiled 

both for CPU and Xeon Phi. These code fragments are marked by special OpenMP 4.0 

directives (generally #pragma offload). The program is executed as well as in case of 

GPU use: a sequential part – on CPU, and parallel part with special directives – on the 

coprocessor. At this mode the same problem, as if GPU is used, arises – data loading and 

uploading in own memory of the coprocessor through PCIe. If there is no the coprocessor 

in a node, special code fragments will be executed on CPU. 

 Symmetric the mode – the same program is compiled separately for CPU and separately 

for the coprocessor. The compiled programs are launched simultaneously on the 

coprocessor and CPU and can be synchronized by means of MPI technology. 

The main mode of execution selected for implementation in DVMH is symmetric mode. 

This mode allows to tune balance between CPU and the coprocessor using MPI technology 

and to use OpenMP technology for the best loading of the cores inside each device. It is also 

possible to launch FDVMH program only on the coprocessor (native mode), using, for 

example, one MPI process and maximum quantity of OpenMP threads supported by the 

coprocessor. 

As a result, parallelizing programs in DVMH model, it isn't necessary to select this or that 

architecture, whether it be graphic processors, central processors or Intel Xeon Phi 

coprocessors as this model supports usage of all listed architectures both separately, and 

simultaneously for the same program. 

5. Implementation of Xeon Phi support in FDVMH compiler 

The computational region in DVMH program is a fragment of the program with one 

entrance and one exit for possible execution on one or several computational devices. The 

region may contain several parallel loops. This program fragment is marked by REGION 

directive. 

The region can be executed on one or several devices: accelerators, CPU, coprocessors.  

Any region can be executed on CPU or on the coprocessor. For execution of same region on 

different accelerators different additional restrictions can exist for the region. For example, on 

CUDA device any region which hasn’t input/output statements or calls of external procedures 

can be executed. 

It is possible to specify type of the calculator where a region should be executed. The 

TARGETS specification is intended for this purpose. Enclosed (statically or dynamically) 

regions aren't allowed. DVM arrays are distributed on selected calculators (taking into 

account weights and high-speed performance of calculators), undistributed data are replicated. 

The iterations of parallel DVM loops inside the region are split between the calculators 



selected for the region execution according to the rule of parallel loop mapping, specified in 

the parallel loop directive. 

5.1. Generation of handlers for parallel loops 

Fortran-DVMH compiler converts source program to the parallel program in Fortran 

language with function calls of DVMH runtime system (RTS – RunTime System). Besides, 

the compiler creates for each source program several additional modules to support execution 

of the program regions on GPU using CUDA technology and on CPU and coprocessor using 

OpenMP technology. 

For each parallel loop from computational region the compiler generates procedure-

handler and a kernel for computations on GPU and also procedure-handler for execution of 

this parallel loop on CPU and coprocessor. The handler is a subprogram processing parallel 

loop part on certain computational device. Arguments of the handler are the device descriptor 

and the parallel loop part. 

The handler requests from RTS a portion for execution (the loop boundaries and a step), a 

configuration of parallel processing (quantity of threads), an initialization of reduction 

variables and other system information. To execute the parts of the loop CUDA handler calls 

CUDA kernel, generated in special way, with parameters, received from RTS during 

execution. CUDA kernel is executed on the graphic processor, performing computations of 

the loop body. To process the loop parts CPU handler uses OpenMP technology for 

distribution of computations. It is supposed by default that the computational region can be 

executed on architectures of all types which exist at the cluster node, and the compiler 

generates handlers for CPU, the coprocessor and CUDA device. 

One of the main reasons of deceleration of the programs executed on CPU or on the 

coprocessor is a linearization of distributed arrays performed by Fortran-DVMH compiler. 

The memory for elements of such arrays is allocated by RTS system. For local section of the 

array the memory is allocated on each processor according to data distribution format and 

taking into account shadow edges. The compiler replaces ARRAY (I, J, K) references to 

elements of distributed arrays by the following references: 

BASE(ARRAY_OFFSET+I+C_ARRAY1*J+C_ARRAY2*K), 

where BASE – a base for addressing of all distributed arrays; ARRAY_OFFSET – offset of 

the array beginning relative to the base; C_ARRAYi – coefficients of addressing of the 

distributed array. Such program is worse recognized and optimized by standard Fortran 

compilers. 

To solve this problem FDVMH compiler by special option can generate the optimized 

handlers in order to distributed arrays will be passed to host handlers as assumed shape arrays. 

Such approach allows not to convert the references to the arrays in linear form inside host 

handlers and essentially increases the program performance on CPU or coprocessor. 

5.2. Use of collapse clause 

Unlike central processors, which have no more than 24 threads (for newest Intel Xeon E), 

Intel Xeon Phi coprocessors can have 244 threads. There are a lot of tasks having not only 

one-dimensional loops, but also two-dimensional and three-dimensional.  Many of NPB 

Benchmarks [9], in particular, are such tasks. OpenMP directive !$OMP PARALLEL FOR, 

generated by FDVMH compiler in host handlers, is applied  only to the most upper loop of 

the nest. If a number of iterations of such loop is less, than a quantity of available threads, 

then performance will be decreased. 

To optimize the work of host handlers on Xeon Phi it is necessary to generate an 

additional COLLAPSE clause in OpenMP directive. COLLAPSE clause allows to distribute 



execution of several loops of the nest that allows to use all cores of the coprocessor. The 

parameter of this clause is a quantity of nested loops to which it is applied. To apply this 

clause to all nested loops is not efficiently as the same thread will process the elements not 

lying in a row and in this case there will be more misses in L2 cache. 

Static analysis during DVMH program compilation can’t determine a quantity of nested 

loops to which COLLAPSE clause can be applied. Therefore during compilation several host 

handlers are generated.  In each of them COLLAPSE (N) clause is inserted, where N = 1, 2, 3, 

… , m, and m is the quantity of loops in the nest. During the program execution RTS selects 

the handler which will execute the parallel loop. 

A user can set the option –collapsN for DVMH compiler, where N is integer positive 

number. Then COLLAPSE(N) clause will be added in OpenMP directive for each parallel 

loop in the host handler. 

5.3. Loading balance in DVM system 

One of the important aspects of DVMH program model functioning is the problem to 

map a source program on all parallelism levels and heterogeneous computational devices. The 

important tasks of mapping mechanism are a support of correct execution of all constructions 

provided by language on heterogeneous computational devices, loading balance between 

computational devices, and also selection of  optimum method of each code fragment 

execution on this or that device. There are several levels of parallelism in DVMH programs: 

 Distribution of data and computations on MPI processes. This level is specified by data 

distribution and redistribution directives and by specifications of parallel subtasks and 

loops. At this level the program is mapped on cluster nodes. Several MPI processes can 

exist inside each node, and they can be mapped on  CPU cores or coprocessor cores; 

 Distribution of data and computations on computational devices at the entrance into  

computational region. 

 Parallel processing within computational device. This level appears at entrance into 

parallel loop inside computational region. At this level the computations are mapped on 

OpenMP threads and CUDA architecture. 

According to this division in DVMH model there are two levels of balancing between 

computational devices: specifying of weight of each MPI process mapped on CPU or 

coprocessor cores, and specifying of a ratio of computational capability between cores of 

CPU and GPU for each MPI process. 

To tune DVMH program performance its recompilation isn’t required. To define a ratio 

of MPI processes, user should specify a vector of weighs in the special file with parameters of 

DVMH program startup. According to specified weights, RTS will separate data between 

MPI processes during the program execution. By default all MPI processes are identical. 

To balance loading between CPU and GPU the following mechanisms exist. For all 

settings environment variables are used. The user can define required amount of threads on 

CPU (or on coprocessor) in OpenMP terms. It is also possible to turn on or turn off a parallel 

loop execution on one or several GPUs. To specify CPU and GPU performance two 

environment variables are used: 

 DVMH_CPU_PERF – relative performance of CPU. There is a possibility to specify 

different values of this parameter for different MPI processes executed on CPU cores or 

on Intel Xeon Phi coprocessor cores. 

 DVMH_CUDAS_PERF – relative performance of GPU. It is set by the list of real 

numbers through a space or a comma. The list is circular. It allows not to specify 

performances of all GPUs. 

Thus, DVM system allows to use efficiently all devices of different architecture attached 

to cluster nodes by two-level balancing: specifying of each MPI process weight and 



specifying of performance a ratio between OpenMP threads and CUDA devices inside each of 

MPI processes. 

6. Applying of AVX instructions 

Minimum parallelism unit in terms of GPU is warp consisting of 32 independent threads. 

When applied programmer writes a parallel program using CUDA program model he himself 

defines the warps, integrates them in blocks, and then in grids of blocks, thereby specifying 

where and what will be executed in parallel and veсtorially. It is possible to consider that the 

minimum size of a vector is equal to 32 elements in GPU architecture. Further problems of 

optimization, planning and data loading/uploading will be solved by the NVidia compiler and 

GPU hardware. 

Minimum parallelism unit of one core of CPU or coprocessor is AVX vector register 

which can process 256 or 512 bit of data per one operation correspondently. In this case the 

applied programmer works at first with a serial code of the program, and then applies high 

level OpenMP directive extensions. And unlike GPU, in the program oriented on the CPU or 

the coprocessor there are no explicit specifications of vector operations – the compiler 

performs all vectorization job. Therefore there are two methods of efficient parallel program 

writing using AVX vector registers: 

 to use  the compiler or OpenMP directives (for example, "omp simd"); 

 to use low level commands or AVX instructions (at the level of intrinsic-functions). 

The first method is realized not always because the compiler not always can perform 

vectorization even if it is possible. Let's consider two versions of the same loop (see Fig. 1).  

#if VER1 /*** first version of the loop ***/ 

  double rhs[5][162][162][162], u[5][162][162][162]; 

  #define rhs(m,i,j,k) rhs[(m)][(i)][(j)][(k)] 

  #define u(m,i,j,k)     u[(m)][(i)][(j)][(k)] 

#endif 

#if VER2 /*** second version of the loop ***/ 

 double rhs[162][162][162][5], u[162][162][162][5]; 

 #define rhs(m,i,j,k) rhs[(i)][(j)][(k)][(m)] 

 #define u(m,i,j,k)     u[(i)][(j)][(k)][(m)] 

#endif 

#pragma omp parallel for 

for(int i = 0; i < Ni; i++) 

{ 

 for(int j = 0; j < Nj; j++) 

 { 

  for(int k = 0; i < Nk; k++) 

  { /*** first group of statements ***/ 

   rhs(0, i, j, k) = F(u(0, i, j, k), u(0, i+1, j, k)); 

   rhs(1, i, j, k) = F(u(1, i, j, k), u(1, i-2, j, k)); 

   rhs(2, i, j, k) = F(u(2, i, j, k), u(2, i, j+1, k)); 

   rhs(3, i, j, k) = F(u(3, i, j, k), u(3, i, j-1, k)); 

   rhs(4, i, j, k) = F(u(4, i, j, k), u(4, i+1, j, k+1)); 

   /***second group of statements ***/ 

    for (int m = 0; m < 5; m++) 

     rhs(m, i, j, k) += F(u(m, i, j, k), u(m, i, j+1, k)); 

  } 

 } 

} 

Fig.1. Two versions of parallel loop 

These loops perform identical computations, but they differ in data location in memory. 

In the first version (VER1) the compiler can't vectorize any group of statements as the fastest 



indexed dimension is the dimension of parallel loop. In the second version (VER2) the 

compiler successfully vectorizes the second group of statements as the fastest indexed 

dimension isn't dimension of parallel loop and data along this dimension are located in 

memory in a row. 

Nevertheless, there are situations when it is favorable to use data location as in the first 

version (VER1, Fig. 1). One of such situations is reordering of arrays in previous parallel loop 

of the program for the better localization of data. And in order to avoid a deceleration of the 

considered loop execution, it is necessary to use AVX vector instructions directly in the 

program code. 

For the first version (VER1) vectorization of two groups of statements is possible because 

data on the fastest dimension of a parallel loop are located in memory in a row. The example 

of transformation of one of statements using AVX instructions is shown in Fig. 2. 

double rhs[5][162][162][162], u[5][162][162][162]; 

#pragma omp parallel for 

for(int i = 0; i < Ni; i++) 

{ 

 for(int j = 0; j < Nj; j++) 

 { 

 /*** изменение индексного пространства цикла ***/ 

  for(int k = 0; i < Nk; k+=8) 

  { /*** rhs[0][i][j][k] = u[0][i][j][k] + u[0][i+1][j][k]; ***/ 

   _mm512_store_pd(&rhs[0][i][j][k], 

    _mm512_add_pd( 

     _mm512_load_pd(u[0][i][j][k]), 

     _mm512_load_pd(u[0][i+1][j][k] 

    ) 

   ); 

  } 

 } 

} 

Fig. 2. AVX transformation 

In one operation 512-bit AVX command can process 8 elements of double type. Use of 

this approach allows to accelerate the program approximately by 8 times. To confirm this fact 

one of computationally complex procedures of NPB SP test was implemented in C++ 

language with use of AVX instructions and without them. The obtained programs were 

compiled by Intel compiler with optimization flag -O3. 

As a result of the experiment there was obtained the acceleration about 6.3 times in 

comparison with the same procedure without use of AVX instructions (see Table 1).  It shows 

high efficiency of this approach. The possibility to use AVX instructions in Fortran-DVMH 

compiler is a subject for further researches. 

Table 1. Comparison of runtime of different implementations of compute_rhs procedure from 

SP program 

 Xeon Phi 240th Xeon Phi 240th + AVX512 SpeedUp 

CLASS A 2,9 sec 1,8 sec 1,55 

CLASS В 13,4 sec 4,8 sec 2,76 

CLASS С 118,1 sec 18,7 sec 6,31 



7. Obtained results. Comparing with MPI and OpenMP versions of NASA 

benchmarks. 

To estimate parallelization efficiency of the programs using DVMH model the runtimes 

of Fortran-DVMH versions of NAS benchmarks (MG, EP, SP, BT and LU from NPB 3.3 

package) were compared with runtimes of standard versions of the tests using MPI and 

OpenMP technologies. There is single version of parallel FDVMH program for each of the 

tests which can be compiled for each of the architectures: CPU, coprocessor or GPU. All 

optimizations applied to the tests were described in article [12]. 

Тестирование производилось на сервере с установленными на нем 6-ядерным (12-

поточным) процессором Intel Xeon E5-1660v2 c 24Гб оперативной памяти типа DDR3, 

сопроцессором Intel Xeon Phi 5110P c 8Гб оперативной памяти типа GDDR5 и ГПУ 

NVidia GTX Titan c 6Гб оперативной памяти типа GDDR5. Основные результаты 

представлены в Таблице 2. 

Testing was performed on the server with 6-core (12-threads) Intel Xeon E5-1660v2 

processor with 24 GB of DDR3 RAM, Intel Xeon Phi 5110P coprocessor with 8 GB of 

GDDR5 RAM and NVidia GTX Titan GPU with 6 GB of GDDR5 RAM. The main results 

are shown in Table 2. 

Table 2. Runtimes of different versions of NASA tests (in seconds) 

Application NAS

A 

Fortran-DVMH 

 

Test 

 

Class 
Xeon E5 (4-12th) Xeon Phi (64-240th) Xeon 

E5 

 

12th 

Xeon 

Phi 

 

240th 

GTX 

 

Titan 
Serial MPI OpenMP MPI OpenMP 

 

 

BT 

A 40,7 12,

13 

10,2 11,08 11,5 7,8 7,68 2,84 

B 166,9 54,

9 

43,07 33,1 32,15 32,2 20,9 9,16 

C 713,3 223

,1 

176,7 119,4 105,7 125 74 31,05 

 

 

SP 

A 28,6 17,

8 

14,6 12,03 13,3 15,5 11,6 2,4 

B 116,9

4 

96,

8 

57,1 33,4 38,7 37 27 10,2 

C 483,2

4 

408

,6 

425,2 124,0

3 

128,2 174,1 120 3

1  

 

LU 

A 35,07 9,6 8,31 15,05 16,5 18,9 33,75 4,18 

B 148,5

6 

35,

2 

31,10 47,01 44,5 77,7 89,8 11,69 

C 852,3 291

,4 

351,9 162,4 134,2 312,5 192,5 34,32 

 

 

MG 

A 1,06 0,5

7 

0,7 0,36 0,22 0,8 0,61 0,13 

B 4,96 2,7 3,22 1,7 1,13 3,8 2,8 0,58 

C 42,3 25,

7 

34,6 10,9 6,39 29,7 15,5 3,36 

 

 

EP 

A 16,73 1,6

3 

1,76 0,94 0,89 1,5 0,78 0,48 

B 67,33 6,6 7,03 3,94 3,31 5,99 2,99 1,17 

C 266,3 26,

1 

26,3 14,8 13,31 23,96 11,6 4,27 

 
Acceleration of FDVMH version of EP test in comparison with serial version of the 

test executed on one core of CPU is shown in Fig. 3. The test was executed on different 

architectures separately, and also in the following combinations: CPU + GPU, CPU + 

coprocessor and coprocessor + CPU + GPU. For each configuration the number of MPI 



processes and amount of OpenMP threads inside each of the processes is shown in Fig. 3. The 

cases marked by red and magenta colors are the cases when loading balance was additionally 

used by specifying of weight ratio of all cores of CPU and GPU and weight ratio of MPI 

processes mapped on CPU and coprocessor. 

As a result, in case of simultaneous use of GPU and CPU we could obtain this test 

performance 17% more than its performance only on GPU. At that the ratio of CPU and GPU 

performances was set 1: 5,7 correspondently. 

When the coprocessor and CPU were used simultaneously we could obtain 

performance 30% more than the test performance on one coprocessor. The most favorable 

ratio of MPI processes is following: two MPI processes on Xeon Phi and one MPI process on 

Xeon E5, and MPI processes have equal weights, or one MPI process on CPU and on 

coprocessor, and ratio of the process weights is 1: 2 correspondently. 

When all devices attached to the node were used we could obtain performance which is 

28% more than EP test performance on GPU and exceeds of the test performance on the 

coprocessor by 3.7 times. 

 
Fig. 3. Use of loading balance in DVMH program on the example of EP test, class C 

8. Conclusions 

As a result of this research the extension of DVM system was implemented to support 

Intel Xeon Phi coprocessors. Thus, the important step was made to provide efficient 

portability of FDVMH programs when the same parallel program can be executed efficiently 

on the clusters of different architecture using multi-core universal processors, graphic 

accelerators and Intel Xeon Phi coprocessors. The implemented mapping of DVMH program 

on CPU and coprocessor allows to apply many of those optimizations of serial program which 

were described in article [14] and allow to map these programs efficiently on graphic 

processors. 

The runtimes of implemented FDVMH programs given above show that the performance 

of MG and LU tests on Intel Xeon Phi accelerator and CPU is low. LU test contains loops 

with dependences on more than one dimension. It is possible that the diagonal execution 

scheme together with diagonal transformation of arrays by RTS during execution can give the 

same effect, as on GPU [13]. This problem is a subject for further researches. 
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