

GPU parallelization of the tests from NAS NPB3.3.1 using Fortran

DVMH programming language
*

V.F. Aleksahin
1
, V.A. Bakhtin

1
, O.F. Zhukova

1
, A.S. Kolganov

1
, V.A. Krukov

1
,

N.V. Podderugina
1
, M.N. Pritula

1
, O.A. Savitskaya

1
, A.V. Shubert

2,

Keldysh Institute of Applied Mathematics RAS
1

Lomonosov Moscow State University
2

The paper presents a number of transformations applied to serial versions of NAS Parallel

Benchmarks, NPB3.3.1 (EP, MG, BT, LU, SP) and the parallel execution specifications of

these tests by DVMH directives which are necessary for their high performance execution

on clusters with GPUs. We explore the impact of different parallelization options on the

program performance. The characteristics of the tests developed on a high-level language

Fortran-DVMH (hereinafter FDVMH) are compared with their implementation on a low-

level language OpenCL performed by researchers from Seoul National University.

1. Introduction

A lot of computational clusters with accelerators attached to their nodes are emerging in

recent years. Most of them are graphics processors by Nvidia Corporation. Clusters with

accelerators of other architecture – Xeon Phi by Intel Corporation – began to show up in

2012. In the Top500 list [1] of the most powerful supercomputers of the world published in

November, 2013, 53 computers have accelerators, 39 computers from them have NVIDIA

accelerators, 14 – Intel, 2 – AMD/ATI. This tendency significantly complicates the process of

cluster programming due to requirement to know good several programming models and

languages at once. Traditional approach is to use MPI technology for job distribution between

cluster nodes, and then to use CUDA (or OpenCL) and OpenMP technologies to load all the

cores of the central and graphics processors.

To simplify programming of distributed computing systems several high-level

programming languages based on directives, such as HPF [2], Fortran-DVM [3,4], C-DVM

[3,5] have been proposed. Programming models and appropriate directive-based extensions of

programming languages such as HMPP [6], PGI Accelerator Programming Model [7],

OpenACC [8], hiCUDA [9] have been also proposed for possibility to use accelerators.

Since GPU’s array-parallel architecture is well suitable for processing of

multidimensional loops without dependencies, its parallelization does not expose great

ideological problems, whether it would be manual parallelization or with use of high-level

tools. The loops with dependencies can be parallelized with considerably higher difficulties,

associated with limited support of execution flow synchronization on GPU and consistency

model of global memory.

2. Review of NASA NPB 3.3 Benchmarks

NAS Parallel Benchmarks [13] are suite of benchmarks allowing to estimate performance

of supercomputers. They were developed and supported in NASA Advanced Supercomputing

(NAS) Division (earlier NASA Numerical Aerodynamic Simulation Program) in NASA

Ames Research Center. The NPB 3.3 Benchmarks consist of 11 tests.

*
The research was supported by grants of the Russian Foundation for Basic Research No. 13-07-00580, 14-01-

00109 and Presidium of Russian Academy of Sciences, Programs №15, №16 and №18

In the paper the parallelization of EP, MG, BT, LU, SP tests on GPU is considered. The

parallel versions of the tests for clusters were earlier implemented in Fortran-DVM high-level

language:

MG (Multi Grid) – a multiple grid. The test calculates approximated solution of three-

dimensional partial differential Poisson equation ("three-dimensional grid") on NxNxN grid

with periodic boundary conditions (the function is equal 0 on the boundary except of the

given 20 points). The grid size N is determined by the test class. It tests the possibilities of the

system to perform both long and short data transfer.

EP (Embarrassingly Parallel) – embarrassingly parallel. The test calculates an integral by

Monte-Carlo method. It is the test of "complicated parallelism" for measurement of primary

computational capacity of floating arithmetics. This test can be useful if the problems using

the Monte-Carlo method will be solved on a cluster. The algorithm also takes into account the

time of formatting and data output.

BT (Block Tridiagonal) – block three-diagonal scheme. The test solves synthetic system of

nonlinear differential equations in partial derivatives (three-dimensional system of Navier-

Stokes equations for compressible fluid or gas), using block three-diagonal scheme with the

method of alternating directions.

SP (Scalar Pentadiagonal) – scalar pentadiagonal. The test solves synthetic system of

nonlinear differential equations in partial derivatives (three-dimensional system of Navier-

Stokes equations for compressible fluid or gas), using scalar pentadiagonal scheme.

LU (Lower-Upper) – decomposition by symmetric method of Gauss-Seidel. The test solves

synthetic system of non-linear differential equations in partial derivatives (three-dimensional

system of Navier-Stokes equations for compressible fluid or gas), using a method of

symmetric successive over relaxation.

These tests may be divided into two groups: EP and MG – tests not requiring to

parallelize loops with regular data dependencies (i.e. there are no parallel loops with

ACROSS specifications in FDVM versions of the tests) and BT, SP, LU – tests requiring to

parallelize loops with regular data dependencies (i.e. there are parallel loops with ACROSS

specifications in FDVM versions of the tests).

Characteristics of the resulted tests after transformation using FDVMH are the following:
There is only 1 parallel loop in EP test.
There are 15 tightly-nested parallel loops in MG test.
There are 44 tightly-nested parallel loops in BT test. 6 loops from them have a

dependence on one of three dimensions, and dependent dimension in different loops

corresponds to different dimensions of processed arrays.

There are 25 tightly-nested parallel loops in SP test. 6 loops from them have dependence

on one of three dimensions, and dependent dimension in different loops corresponds to

different dimensions of processed arrays.

There are 107 tightly-nested parallel loops in LU test. 2 loops from them have dependence

on all three dimensions.

3. Implementation and features of EP and MG tests

3.1 EP test

In the test the pairs of pseudorandom normally distributed numbers are generated and the

frequencies of their hit in each of ten selected half-intervals [k, k+1) are calculated, where k is

varied from 0 to 9. The test contains the single loop, and it is possible to perform its iterations

independently from each other. During parallel execution of the loop on cluster no exchanges

between processors are required, and when the loop is finished the results of sum reduction

operation accumulated on each processor are jointed in the array of 10 elements. For efficient

mapping on GPU the parallel loop in DVM program is declared as computational region.

3.2 MG test

MG test implements the algorithm of multi-grid method of Poisson task solution. The test

contains two types of loops where the main computational loading is concentrated. The loops

of first type are loops of projection on more rough grid – during descent on V-loop and of

approximation on refined grid during ascension on the V-loop. The loops of the second type

are the loops of the solution interpolation based on a discrepancy.

When the values in one grid are calculated using values of other grid it is necessary

appropriate distribution of these grids on processors. To solve this problem REALIGN

directive allowing to redistribute already distributed array was used in FDVM version. As

transition from one grid to other grid is performed very often, their redistributions cause the

program deceleration. The deceleration during execution on GPU was very significant

because of the low speed of exchanges between CPU memory and GPU memory (in

comparison with the speed of computations on GPU). Therefore it was decided to reduce the

number of REALIGN directives during computations in FDVMH version and instead of them

to use additional memory to store several copies of the grid with different distribution of its

elements on processors. The possibilities of Fortran DVMH language for operation with

dynamic arrays and pointers were used.

3.3 Optimization of MG test loops

There are four main computational loops in MG test. Each of them is constructed by the

same way. Therefore we will consider only one loop and its optimization. PARALLEL

directive allows to match the iterations of tightly-nested loops to elements of distributed

arrays. In this case tightly-nested loops will be executed in parallel (see Fig. 3.1).

Fig. 3.1. The loop of psinv procedure before transformations

It isn't difficult to see that, for example, for each fixed iteration on i2 the data of R array

on remained not fixed indexes (i1, i3) and all their combinations (i1±1, i3±1) are required. As

a result, each thread executing the loop iteration on i2 will read the repeated data of adjacent

threads on i1 and i3 indexes. To reuse the data we make the loop on i2 the most internal loop

and change the directive as follows:

!DVM$ PARALLEL (i3, i1) ON u(i1, *, i3)

To reuse the values in the loop, for each fixed pair (i1, i3) and (i1±1, i3±1) we introduce three

variables declared as private – r1, r1_p1 and r1_m1 which will correspond to i2, i2+1, i2-

1indexes. Then it is necessary to read data in r1_m1 and r1 before main loop, to add reading

in r1_p1 in the loop before computations, to change the appropriate expressions in the loop by

read ones, and after computations – to save r1 and r1_p1 values in r1_m1 and r1 variables

correspondently for next iteration. After all transformations there will be 5 groups in the loop

(see Fig. 3.2).

!DVM$ PARALLEL (i3,i2,i1) ON u(i1,i2,i3)

do i3=2,n3-1)

do i2=2,n2-1

do i1=2,n1-1

u(i1,i2,i3) = u(i1,i2,i3) + c(0) * r(i1,i2,i3) + c(1) *

(r(i1-1,i2,i3) + r(i1+1,i2,i3) + r(i1,i2-1,i3) + r(i1,i2+1,i3)

+ r(i1,i2,i3-1) + r(i1,i2,i3+1)) + c(2) * (r(i1,i2-1,i3-1)

+ r(i1,i2+1,i3-1) + r(i1,i2-1,i3+1) + r(i1,i2+1,i3+1)

+ r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3) + r(i1-1,i2,i3-1)

+ r(i1-1,i2,i3+1) + r(i1+1,i2-1,i3) + r(i1+1,i2+1,i3)

+ r(i1+1,i2,i3-1) + r(i1+1,i2,i3+1))

enddo

enddo

enddo

Fig. 3.2. The loop of psinv procedure after transformations

Thereby the number of necessary readings from global memory significantly reduced due

to saving already read values in i2 loop upon transition from one iteration to another. On the

class С the program runtime was reduced by 50% in comparison with the program without

these optimizations, however the program runtime on the CPU became much worse.

4. Implementation and features of the BT, SP, LU tests

4.1 Review of dependence types

To understand nature of data dependency better we abstract from algorithm of each of the

tests and will consider standard programs, namely – the method of alternating directions used

in BT and SP tests and the method of successive over relaxation (Successive over relaxation -

SOR) used in LU test.
The sample program for method of alternating directions is shown below (see Fig. 4.1).

!DVM$ PARALLEL (i3,i1) ON u(i1,*,i3)

!DVM$& ,PRIVATE (i2, r1,r1_m1,r1_p1, r2,r2_m1,r2_p1, r3,r3_m1,r3_p1,

r4,r4_m1,r4_p1, r5,r5_m1,r5_p1)

do i3=2,n3-1

do i1=2,n1-1

r1_m1 = r(i1,1,i3) ! loading of initial values before the loop

r1 = r(i1,2,i3)

r2_m1 = r(i1-1,1,i3)

r2 = r(i1-1,2,i3)

r3_m1 = r(i1+1,1,i3)

r3 = r(i1+1,2,i3)

r4_m1 = r(i1,1,i3+1)

r4 = r(i1,2,i3+1)

r5_m1 = r(i1,1,i3-1)

r5 = r(i1,2,i3-1)

do i2=2,n2-1

r1_p1 = r(i1,i2+1,i3) ! loading of next values

r2_p1 = r(i1-1,i2+1,i3)

r3_p1 = r(i1+1,i2+1,i3)

r4_p1 = r(i1,i2+1,i3+1)

r5_p1 = r(i1,i2+1,i3-1)

u(i1,i2,i3) = u(i1,i2,i3)+

c_0 * r1 + c_1 * (r2 + r3 + r1_m1 + r1_p1 + r4 + r5) +

c_2 * (r4_m1 + r4_p1 + r5_m1 + r5_p1 + r2_m1 + r2_p1 +

r(i1-1,i2,i3-1) + r(i1-1,i2,i3+1) + r3_m1 + r3_p1 +

r(i1+1,i2,i3-1) + r(i1+1,i2,i3+1))

r1_m1 = r1 ! saving of read values

r1 = r1_p1

r2_m1 = r2

r2 = r2_p1

r3_m1 = r3

r3 = r3_p1

r4_m1 = r4

r4 = r4_p1

r5_m1 = r5

r5 = r5_p1

enddo

enddo

enddo

Fig.4.1. Implementation of the method of alternating directions

There are three tightly-nested loops in the program and there is a dependence on one of

three dimensions in each of the loops. In the first nest of loops the most inner loop can be

executed only sequentially since there is the dependency on data of A array. In this regard – if

this loop is executed on GPU –a time of reading from memory will be large because data for

parallel iterations of the remained two loops will be located not in a row. One of the ways to

solve this problem is to reorder two first dimensions of A array. But then the similar problem

will arise in the second nest of loops. It is possible to solve the problem similarly, for

example, to reorder first two dimensions back. Therefore, it is impossible to select initial

arrangement of the array so that all three nests of the loops will be executed most efficiently.

Let's consider the example of other program implementing a method of successive over

relaxation (see Fig. 4.2). There is only one nest of loops in this program where computations

are performed. Unlike a method of alternating directions in this method the main loop has

dependence on all its dimensions. It results in considerable difficulties of parallelization even

in OpenMP model.

program sor

parameter(n1=1000,n2=1000,n3=1000,itmax=100,

maxeps=0.5e-6,w=0.5)

real a(n1,n2,n3), eps, w

integer itmax

call init(a, n1, n2, n3)

do it = 1,itmax

3

program adi

parameter(nx=400,ny=400,nz=400,maxeps=0.01,itmax=100)

integer nx,ny,nz,itmax

double precision eps,relax,a(nx,ny,nz)

call init(a,nx,ny,nz)

do it = 1,itmax

eps=0.D0

do k = 2,nz-1

do j = 2,ny-1

do i = 2,nx-1

a(i,j,k) = (a(i-1,j,k) + a(i+1,j,k)) / 2

enddo

enddo

enddo

do k = 2,nz-1

do j = 2,ny-1

do i = 2,nx-1

a(i,j,k) = (a(i,j-1,k) + a(i,j+1,k)) / 2

enddo

enddo

enddo

do k = 2,nz-1

do j = 2,ny-1

do i = 2,nx-1

eps = max(eps, abs(a(i,j,k) - a(i,j,k-1)+a(i,j,k+1)) / 2))

a(i,j,k) = (a(i,j,k-1)+a(i,j,k+1)) / 2

enddo

enddo

enddo

if(eps.lt.maxeps) goto 3

enddo

continue

end

Fig.4.2. Implementation of successive over relaxation method

4.2 Algorithm of mapping of loops with dependences in DVM system

The following algorithm is used in DVM system [12] to map these loops. А set of tuples

of all possible values of index loop variables will be called a space of the loop iterations.

There are flow- and anti- dependencies for I, J and K dimensions in the considered loop,

therefore its space of iterations can't be mapped on the block of GPU threads since all threads

are executed independently. One of the known methods of such loop mapping is the method

of hyperplanes. All elements of a hyperplane can be calculated independently from each other.

Such order of execution of the loop iterations causes a problem of efficient access to

global memory because not adjacent elements of arrays are processed in parallel. That results

in considerable performance losses (approximately 10 times). And unlike the first considered

program it will be even more difficult to specify initial arrangement of the array as the

elements are calculated by hyperplanes. Existence in the program of the loops with

dependences on more than one dimension and loops without dependences complicates the

problem since different arrangement of data for such loops is required for their efficient

execution.

To free a programmer from the described above difficulties, the following possibilities are

in FDVMH language: the support of loops with dependences using ACROSS specification in

PARALLEL directive and dynamic rearrangement of arrays.

4.3 ACROSS specification

The implementation of ACROSS specification is based on the method of hyperplanes

described above. To specify that the loop has a dependence, it is necessary to add the list of

arrays with dependence to ACROSS specification (see Fig. 4.3).

!example for the method of alternating directions

!DVM$ PARALLEL (k,j,i) on A(i,j,k), ACROSS(A(1:1,0:0,0:0))

do k = 2,nz-1

do j = 2,ny-1

do i = 2,nx-1

a(i,j,k) = (a(i-1,j,k) + a(i+1,j,k)) / 2

enddo

enddo

enddo

4

eps = 0.

do k = 2, n3-1

do j = 2, n2-1

do i = 2, n1-1

s = a(i,j,k)

a(i,j,k) = (w/4)*(a(i-1,j,k)+a(i+1,j,k)+

a(i,j-1,k)+a(i,j+1,k)+ a(i,j,k-1)+a(i,j,k+1))

+ (1-w)*a(i,j,k)

eps = max(eps, abs(s - a(i,j,k)))

enddo

enddo

enddo

if (eps .lt. maxeps) goto 4

enddo

continue

end

Fig. 4.3. Usage of ACROSS specification for two methods

4.4 Mechanism of dynamic rearrangement of arrays in DVMH

To optimize an access to global memory of GPU the mechanism of dynamic

rearrangement of arrays has been implemented in DVMH runtime system. Before parallel

loop execution on GPU the correspondence between the loop dimensions and dimensions of

arrays used in the loop is verified and if it is necessary some arrays are rearranged so that the

access to elements will be performed in the best way: adjacent threads of the block will

operate with adjacent cells of global memory.

The mechanism performs any necessary rearrangement of array dimensions and also so

called diagonal transformation, which makes adjacent elements on diagonals (on the plane of

certain two dimensions) to be stored in adjacent memory cells. It enables to apply a technique

of execution of the loop with dependencies by the hyperplanes without considerable

performance losses on access operations to GPU global memory.

4.5 Transformation of source program codes

In BT and SP tests the method of alternating directions is used. In LU test SSOR

(symmetric successive over relaxation) method is used. It consists of two three-dimensional

loops with positive and negative steps with three dependent dimensions.

To parallelize the loops using FDVMH it is necessary to transform the program so that the

loops will be tightly-nested. For example, in LU test the blts and buts procedures were

substituted in order to obtain three-dimensional tightly-nested loops. In SP and BT tests the

loops in compute_rhs procedure were combined for more effective execution. In x_solve,

y_solve and z_solve procedures implementing a method of alternating directions temporary

arrays were expanded by one dimension in order to three-dimensional loops could be

executed on GPU.

4.6 Optimization of obtained programs

A programmer, using high-level FDVMH language, operates with the serial version of the

program. Therefore, it is necessary to write the "good" serial program in order to obtain from

it efficient parallel program. The knowledge of target architecture can be useful for

optimization performing.

The modern CPUs have three-level cache. A size of first level cache is equal to 64KB and

it exists on all computing cores of the processor. The size of the second level cache is varied

from 1 to 2 MB. The cache of the third level is common for whole CPU and its size is 12-

15MB.

The modern GPUs have a two-level cache. A size of the first level cache is equal to

!example for SOR method

!DVM$ PARALLEL (K,J,I) on A(I,J,K), ACROSS(A(1:1,1:1,1:1))
!DVM$& ,PRIVATE(s), REDUCTION(MAX(eps))

do k = 2, n3-1

do j = 2, n2-1

do i = 2, n1-1

s = a(i,j,k)

a(i,j,k) = (w/4)*(

> a(i-1,j,k)+a(i+1,j,k)+

> a(i,j-1,k)+a(i,j+1,k)+

> a(i,j,k-1)+a(i,j,k+1)+

>) + (1-w)*a(i,j,k)

eps = max(eps, abs(s - a(i,j,k)))

enddo

enddo

enddo

64KB. It is used for shared memory and displacement of registers. Not more than 48KB is

available for shared memory. It exists in each computational block. The maximum size of the

second level cache is 1,5MB and it is common for whole GPU. It is used to cache the data

loaded from global memory of GPU. There are 15 computational blocks in modern GPU chip

GK110. So there are about 48KB of first level cache and 102KB of second level cache per

one block. In comparison with CPU, it isn't enough, therefore read operations from global

memory of graphic processor are more expensive than from RAM of central processor. All

optimizations will be directed to decrease a number of readings from global memory and to

increase computational loading. Thereby the ratio of the number of computing operations to

read operations from global memory of GPU is raised.

4.6.1 LU test

The main computational loading is concentrated in four loops of blts and bult procedures.

In each of the procedures at first the initialization of four arrays of double precision type is

performed. The size of the arrays is equal to 25 * Class3, where Class is the size of the

considered task class (for example, Class = 162 for class C). As a result, the class C requires

about 3 GB of memory. As after initialization the next nest of the loops has dependence on

three dimensions, then according to described above principle of DVMH program

functioning, the diagonalization of these arrays will be performed. As after initialization the

arrays are used only in blts and bult procedures, the expressions for initialization of the array

elements were substituted directly in the body of the loop nest with dependence, and the

arrays were deleted that caused a recalculation of the values of these arrays on each iteration.

Thereby the execution of this test on C class requires by 3 GB less memory that allowed to

launch the program on Tesla c2050 GPU.

One more transformation applied to the test is the use of private variables for frequently

used elements of arrays mapped on registers by NVCC compiler. The array element is

frequently used if, first of all, the quantity of writings and readings is more, than the number

of readings for its loading on registers and writing for saving. To explain it let’s consider the

following fragment of the program (see Fig. 4.4).

Fig. 4.4. Source loop

In this fragment U array is used on reading and writing, and the array isn't distributed on

last dimension. 15 writings and 45 readings are performed in total. And for loading on

registers 5 readings are required and the same number of readings will be required to save the

result. As a result, it is necessary to add in the program code two loops for the array loading

and saving, and also to replace all accesses in the loop body by new variable (see Fig. 4.5)

!DVM$ PARALLEL (k,j,i) on u(i,j,k,*), PRIVATE(m1,m2,m)

do k = 2,nz-1

do j = 2,ny-1

do i = 2,nx-1

m1 = 2

m2 = 3

do m = 1,5

u(i,j,k,m) = u(i,j,k,m1) + u(i,j,k,m2)

enddo

do m = 1,5

u(i,j,k,m) = u(i,j,k,m1+1) + u(i,j,k,m2+1)

enddo

do m = 1,5

u(i,j,k,m) = u(i,j,k,m1-1) + u(i,j,k,m2-1)

enddo

enddo

enddo

enddo

Fig. 4.5. Applying of optimization – replacement of u array by u_ array

4.6.2 BT test

As it was described above the largest computational loading in the test is concentrated in

three procedures – x_solve, y_solve, z_solve. Since these procedures differ only in the

dependent dimension (x, y and z correspondently), the optimizations, applied to one of them,

will be also applied also to all remaining. Let’s consider x_solve procedure. It is possible to

see that in x_solve procedure the large temporary lhs array of double precision type is used,

its size is equal to 75 * Class3, where Class is the task class (for example, Class = 162 for the

class C). Thereby, this array on the class C requires about 2,3 GB of memory. We have the

same problems, as for LU test: lack of memory and long time of dynamic rearrangement. It is

possible to solve the problem by described above method – to reduce the array size by re-

initialization of the array elements directly in loop body of x_solve procedure. Thus, due to

the task specifics the auxiliary array can be reduced by one dimension, namely, in the number

of times corresponding to the task class. For the class C the array is reduced by 162 times and

will require about 15 MB.

4.6.3 SP test

Since this test differs from BT in the algorithm used in x_solve procedure, and the

dependence is the same, all described optimizations are applied similarly. The temporary lhs

array of the double precision type is used initially, its size is 15 * Class3. For the class C the

array requires about 500 MB memory and it is impossible to reduce it in the program.

5. The obtained results. Comparison with OpenCL.

To estimate of efficiency of FDVMH parallelization two versions of each of programs

were used: source serial version without any transformations and transformed and optimized

version with FDVMH directives. Testing was performed on K100 supercomputer [14] with

Intel Xeon X5670 processors and NVIDIA Tesla C2050 GPUs of Fermi architecture and on

Titan server with Intel core i7 processors and NVIDIA GeForce GTX GPU of the newest

!DVM$ PARALLEL (k,j,i) on u(i,j,k,*), PRIVATE(m1,m2,m,u_)

do k = 2,nz-1

do j = 2,ny-1

do i = 2,nx-1

do m=1,5
u_(m) = u(i,j,k,m)

enddo

m1 = 2

m2 = 3

do m = 1,5

u_(m) = u_(m1) + u_(m2)

enddo

do m = 1,5

u_(m) = u_(m1+1) + u_(m2+1)

enddo

do m = 1,5

u_(m) = u_(m1-1) + u_(m2-1)

enddo

do m=1,5

u(i,j,k,m) = u_(m)

enddo

enddo

enddo

enddo

Kepler architecture. For comparison, there were obtained execution times of these tests

implemented on low-level OpenCL language by researchers from the Seoul national

university [11].

The results of comparison of parallelization efficiency for BT, LU, SP, MG, EP tests on

A, B, C classes are shown below (see Table 5.1; Fig. 5.1). The acceleration of FDVMH

versions of the tests in comparison with OpenCL is shown in Fig. 5.1. The times and the

accelerations of FDVMH and OpenCL programs in comparison with source serial versions of

the tests executed on one core of Intel Xeon X5670 processor are shown in Table 5.1. A dash

in the table cells means that for corresponding variants of the test launches there wasn't

enough memory on GPU. Note that implementation of OpenCL version of BT test on C class

requires more than 6 GB of memory (4 times more, than FDVMH program requires) that

didn't allow to compare OpenCL and FDVMH versions of the test.

Table 5.1. Efficiency of test parallelization

Program CPU,

Xeon

X5670

FORTRAN DVMH OpenCL

Tesla C2050

(with ECC)

GeForce GTX

Titan

(without ECC)

Tesla C2050

(with

ECC)

GeForce GTX

Titan

(without ECC)

Test

Class
 Time,

seconds

Time,

seconds

Accele

ration

Time,

seconds

Accele

ration

Time,

seconds

Accele

ration

Time,

seconds

Accele

ration

BT

A 52,69 15,63 3,37 5 10,54 75,5 0,7 22,41 2,35

B 221,9 61,74 3,59 18,7 11,87 272,42 0,81 71,7 2,97

C 951,0 192,29 4,94 56,86 16,73 - - - -

SP

A 36,6 9,82 3,73 3,23 11,33 22,95 1,59 6,09 6,01

B 154,7 33,4 4,63 11,37 13,61 86,35 1,79 28,53 5,42

C 637,73 117,55 5,43 35 18,22 433,77 1,47 137,7 4,63

LU

A 40,31 7,0 5,76 5,14 7,84 8,86 4,55 4,49 8,9

B 170 21,0 8,10 12,51 13,59 30,23 5,62 13,49 12,6

C 779 70,5 11,05 37,46 20,80 127,95 6,09 44,65 17,4

MG

A 1,41 0,18 7,8 0,11 12,8 0,20 7,05 0,09 20

B 6,62 0,82 8,07 0,50 13,24 0,94 7,04 0,42 15,7

C 55,17 5,62 9,8 3,08 17,9 7,83 7,04 3,71 14,8

EP

A 7,97 0,24 33,2 0,38 20,9 0,25 31,88 0,43 18,5

B 31,85 0,73 43,6 1,12 28,4 0,82 38,8 1,26 25,2

C 55,17 2,68 20,5 4,14 13,3 2,89 19 4,51 12,2

Fig. 5.1. Acceleration of DVHM programs in comparison with OpenCL programs.

5,5

5

4,5

4

3,5

3

2,5

2

1,5

1

0,5

0

Class A

Class B

Class C

BT SP LU MG EP BT SP LU MG EP

Nvidia Tesla c2050 (Fermi) Nvidia GTX Titan (Kepler)

 A
cc

el
er

at
io

n
 r

at
io

The quantity of lines and words in the considered programs, and also amount of used

memory are shown in Table 5.2. In certain cases DVMH requires more memory for

performing of dynamic rearrangement of the arrays. In the table the amount of memory for

DVMH programs consists of amount of memory without use of dynamic rearrangement and

amount of memory, necessary for dynamic rearrangement.

Table 5.2. Use of memory and quantity of lines and words

Task

Sourse version DVM version OpenCL version

Test Class

memory,

GB

quantity of

lines, words

memory, GB quantity of

lines, words

memory,

GB

quantity of

lines,

words

BT

A 0,041 4092,
13588

0,088+0,044 3478,
18427

0,346 14678,
55932 B 0,166 0,356+0,175 1,2

C 0,665 1,425+0,79 > 6

SP

A 0,043 3469,
10547

0,063+0,005 3437,
10744

0,154 11179,
41714 B 0,174 0,253+0,04 0,340

C 0,698 1,014+0,158 1,38

LU

A 0,036 4148,
18173

0,039+0,005 2682,
15772

0,116 9439,
41426 B 0,142 0,158+0,04 0,249

C 0,558 0,634+0,158 0,776

MG

A 0,440 1686,
5028

0,518 2315,
7713

0,503 4030,
13791 B 0,440 0,518 0,503

C 3,31 3,50 3,55

EP

A 0,07 659,
2614

0,1 704,
2865

0,1 928,
3792 B 0,07 0,1 0,1

C 0,07 0,1 0,1

6. Conclusion

As a result of researches LU, BT, SP, MG and EP tests optimized and parallelized by

FDVMH were obtained. A laboriousness of parallelization by FDVMH and OpenCL can be

estimated roughly by quantity of lines or words added in the source program. In Table 5.2 it

is possible to see that the size of the obtained DVMH programs differs from size of source

serial ones not more than by 45%. The size of OpenCL programs is differed by 2-3 times. In

tests with dependences performance of OpenCL programs is extremely small. Parallelization

efficiency of FDVMH version of EP test is insignificantly higher then parallelization

efficiency of OpenCL version of the test. Parallelization efficiency of DVMH version of MG

test is higher than parallelization efficiency of OpenCL version of the test by 50% if to use

Fermi architecture, and by 25% if to use Kepler architecture, on C class. If to consider

resource-intensive tasks (class C), then FDVMH programs showed higher efficiency, than

OpenCL on all considered tests.

In the further it is intended to parallelize remaining tests by FDVMH and to compare

them with implementations on OpenCL and OpenACC. The researches of parallelization

efficiency of the tests on Intel Xeon Phi platform are intended also.

References

1. Top500 List – November 2013 | TOP500 Supercomputer Sites URL:

http://top500.org/list/2013/11/ (accessed 24.11.2013)

2. High Performance Fortran
URL: http://hpff.rice.edu/ (accessed 01.12.2013)

3. N.A. Konovalov, V.A. Krukov, A.A . Pogrebtsov, N.V. Podderyugina , Y.L. Sazanov.

Parallel’noe programmirovanie v sisteme DVM. Yazyki Fortran-DVM i C-DVM.[

http://top500.org/list/2013/11/
http://hpff.rice.edu/

Parallel programming in the DVM system. Fortran-DVM and C-DVM languages.] //

Proceedings of international conference "Parallel Computations and Control Problems"

(PACO'2001), Moscow, October 2 – 4, 2001, P. 140-154

4. N.A. Konovalov, V.A.Krukov, S.N. Mihailov, A.A. Pogrebtsov. Fortran DVM – yazyk

razrabotki mobil’nyh parallel’nyh programm [Fortran DVM – a language for mobile

parallel programs development]. // Programmirovanie [Programming]. 1995. No. 1.

P. 49–54.

5. N.A.Konovalov, V.A.Krukov, Y.L. Sazanov. C-DVM – yazyk razrabotki mobil’nyh

parallel’nyh programm [C-DVM – a language for mobile parallel programs

development] // Programmirovanie [Programming]. 1999. No. 1. P. 54–65.

6. Romain Dolbeau, Stéphane Bihan, and François Bodin. HMPP™: A Hybrid Multi-

core Parallel Programming Environment.

7. OpenACC

URL: http://www.openacc-standard.org/ (accessed 24.11.2013)

8. T.D. Han and T.S. Abdelrahman. hiCUDA: High-Level GPGPU Programming. IEEE

Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 78-90, Jan. 2011

9. V.A. Bakhtin, M.S. Klinov, V.A. Krukov, N.V. Podderyugina, M.N. Pritula, Y.L.

Sazanov. Rasshirenie DVM-modeli parallel’nogo programmirovaniya dlya klasterov s

geterogennymi uzlami [Extension of the DVM parallel programming model for clusters

with heterogeneous nodes] // Vestnik Yuzhno-Ural’skogo gosudarstvennogo

universiteta, seriya “Matematicheskoe modelirovanie i programmirovanie”, No. 18

(277), vypusk 12. Chelyabinsk: publishing center SUSU, 2012. P. 82–92.

10. Pennycook S.J., Hammond S.D., Jarvis S.A., Mudalige G.R. Performance Analysis of a

Hybrid MPI/CUDA Implementation of the NAS-LU Benchmark. ACM SIGMETRICS

Performance Evaluation Review – Special issue on the 1st international workshop on

performance modeling, benchmarking and simulation of high performance computing

systems (PMBS 10). 2011. Vol. 38, Issue 4. P. 23–29.

11. Seo S., Jo G., Lee J. Performance Characterization of the NAS Parallel Benchmarks in

OpenCL. 2011 IEEE International Symposium on. Workload Characterization

(IISWC). 2011. P. 137–148.

12. V.A. Bakhtin, A.S. Kolganov, V.A. Krukov, N.V. Podderyugina, M.N. Pritula.

Otobrazhenie na klastery s graphicheskimi processorami tsiklov s zavisimostyami po

dannym v DVMH-programmax [Mapping the loops with data dependencies in DVMH-

programs on clusters with graphics processors] // Proceedings of international

conference “Scientific service on the Internet: all verges of parallelism”, September

2013, Novorossiysk. Moscow, Moscow University Press, 250–257.

13. NAS Parallel Benchmarks
URL: http://www.nas.nasa.gov/publications/npb.html (accessed 25.11.2013)

14. Hybrid supercomputer K-100

URL: http://www.kiam.ru/MVS/resourses/k100.html (accessed 25.11.2013)

http://www.openacc-standard.org/
http://www.nas.nasa.gov/publications/npb.html
http://www.kiam.ru/MVS/resourses/k100.html

