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The paper presents a number of transformations applied to serial versions of NAS Parallel 

Benchmarks, NPB3.3.1 (EP, MG, BT, LU, SP) and the parallel execution specifications of 

these tests by DVMH directives which are necessary for their high performance execution 

on clusters with GPUs. We explore the impact of different parallelization options on the 

program performance. The characteristics of the tests developed on a high-level language 

Fortran-DVMH (hereinafter FDVMH) are compared with their implementation on a low-

level language OpenCL performed by researchers from Seoul National University. 

 

1. Introduction 

A lot of computational clusters with accelerators attached to their nodes are emerging in 

recent years. Most of them are graphics processors by Nvidia Corporation. Clusters with 

accelerators of other architecture – Xeon Phi by Intel Corporation – began to show up in 

2012. In the Top500 list [1] of the most powerful supercomputers of the world published in 

November, 2013, 53 computers have accelerators, 39 computers from them have NVIDIA 

accelerators, 14 – Intel, 2 – AMD/ATI. This tendency significantly complicates the process of 

cluster programming due to requirement to know good several programming models and 

languages at once. Traditional approach is to use MPI technology for job distribution between 

cluster nodes, and then to use CUDA (or OpenCL) and OpenMP technologies to load all the 

cores of the central and graphics processors. 

To simplify programming of distributed computing systems several high-level 

programming languages based on directives, such as HPF [2], Fortran-DVM [3,4], C-DVM 

[3,5] have been proposed. Programming models and appropriate directive-based extensions of 

programming languages such as HMPP [6], PGI Accelerator Programming Model [7], 

OpenACC [8], hiCUDA [9] have been also proposed for possibility to use accelerators. 

Since GPU’s array-parallel architecture is well suitable for processing of 

multidimensional loops without dependencies, its parallelization does not expose great 

ideological problems, whether it would be manual parallelization or with use of high-level 

tools. The loops with dependencies can be parallelized with considerably higher difficulties, 

associated with limited support of execution flow synchronization on GPU and consistency 

model of global memory. 
 

2. Review of NASA NPB 3.3 Benchmarks 

NAS Parallel Benchmarks [13] are suite of benchmarks allowing to estimate performance 

of supercomputers. They were developed and supported in NASA Advanced Supercomputing 

(NAS) Division (earlier NASA Numerical Aerodynamic Simulation Program) in NASA 

Ames Research Center. The NPB 3.3 Benchmarks consist of 11 tests. 
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In the paper the parallelization of EP, MG, BT, LU, SP tests on GPU is considered. The 

parallel versions of the tests for clusters were earlier implemented in Fortran-DVM high-level 

language: 

MG (Multi Grid) – a multiple grid. The test calculates approximated solution of three-

dimensional partial differential Poisson equation ("three-dimensional grid") on NxNxN grid 

with periodic boundary conditions (the function is equal 0 on the boundary except of the 

given 20 points). The grid size N is determined by the test class. It tests the possibilities of the 

system to perform both long and short data transfer. 

EP (Embarrassingly Parallel) – embarrassingly parallel. The test calculates an integral by 

Monte-Carlo method. It is the test of "complicated parallelism" for measurement of primary 

computational capacity of floating arithmetics. This test can be useful if the problems using 

the Monte-Carlo method will be solved on a cluster. The algorithm also takes into account the 

time of formatting and data output. 

BT (Block Tridiagonal) – block three-diagonal scheme. The test solves synthetic system of 

nonlinear differential equations in partial derivatives (three-dimensional system of Navier-

Stokes equations for compressible fluid or gas), using block three-diagonal scheme with the 

method of alternating directions. 

SP (Scalar Pentadiagonal) – scalar pentadiagonal. The test solves synthetic system of 

nonlinear differential equations in partial derivatives (three-dimensional system of Navier-

Stokes equations for compressible fluid or gas), using scalar pentadiagonal scheme. 

LU (Lower-Upper) – decomposition by symmetric method of Gauss-Seidel. The test solves 

synthetic system of non-linear differential equations in partial derivatives (three-dimensional 

system of Navier-Stokes equations for compressible fluid or gas), using a method of 

symmetric successive over relaxation. 

These tests may be divided into two groups: EP and MG – tests not requiring to 

parallelize loops with regular data dependencies (i.e. there are no parallel loops with 

ACROSS specifications in FDVM versions of the tests) and BT, SP, LU – tests requiring to 

parallelize loops with regular data dependencies (i.e. there are parallel loops with ACROSS 

specifications in FDVM versions of the tests).  

Characteristics of the resulted tests after transformation using FDVMH are the following: 
There is only 1 parallel loop in EP test. 
There are 15 tightly-nested parallel loops in MG test. 
There are 44 tightly-nested parallel loops in BT test. 6 loops from them have a 

dependence on one of three dimensions, and dependent dimension in different loops 

corresponds to different dimensions of processed arrays. 

There are 25 tightly-nested parallel loops in SP test. 6 loops from them have dependence 

on one of three dimensions, and dependent dimension in different loops corresponds to 

different dimensions of processed arrays.  

There are 107 tightly-nested parallel loops in LU test. 2 loops from them have dependence 

on all three dimensions. 
 

3. Implementation and features of EP and MG tests 

3.1 EP test 
 

In the test the pairs of pseudorandom normally distributed numbers are generated and the 

frequencies of their hit in each of ten selected half-intervals [k, k+1) are calculated, where k is 

varied from 0 to 9. The test contains the single loop, and it is possible to perform its iterations 

independently from each other. During parallel execution of the loop on cluster no exchanges 

between processors are required, and when the loop is finished the results of sum reduction 

operation accumulated on each processor are jointed in the array of 10 elements. For efficient 

mapping on GPU the parallel loop in DVM program is declared as computational region. 



 

3.2 MG test 

MG test implements the algorithm of multi-grid method of Poisson task solution. The test 

contains two types of loops where the main computational loading is concentrated. The loops 

of first type are loops of projection on more rough grid – during descent on V-loop and of 

approximation on refined grid during ascension on the V-loop. The loops of the second type 

are the loops of the solution interpolation based on a discrepancy. 

When the values in one grid are calculated using values of other grid it is necessary 

appropriate distribution of these grids on processors. To solve this problem REALIGN 

directive allowing to redistribute already distributed array was used in FDVM version. As 

transition from one grid to other grid is performed very often, their redistributions cause the 

program deceleration. The deceleration during execution on GPU was very significant 

because of the low speed of exchanges between CPU memory and GPU memory (in 

comparison with the speed of computations on GPU). Therefore it was decided to reduce the 

number of REALIGN directives during computations in FDVMH version and instead of them 

to use additional memory to store several copies of the grid with different distribution of its 

elements on processors. The possibilities of Fortran DVMH language for operation with 

dynamic arrays and pointers were used. 

3.3 Optimization of MG test loops 

There are four main computational loops in MG test. Each of them is constructed by the 

same way. Therefore we will consider only one loop and its optimization. PARALLEL 

directive allows to match the iterations of tightly-nested loops to elements of distributed 

arrays. In this case tightly-nested loops will be executed in parallel (see Fig. 3.1). 

  

Fig. 3.1.  The loop of psinv procedure before transformations 

It isn't difficult to see that, for example, for each fixed iteration on i2 the data of R array 

on remained not fixed indexes (i1, i3) and all their combinations (i1±1, i3±1) are required. As 

a result, each thread executing the loop iteration on i2 will read the repeated data of adjacent 

threads on i1 and i3 indexes. To reuse the data we make the loop on i2 the most internal loop 

and change the directive as follows: 

!DVM$ PARALLEL (i3, i1) ON u(i1, *, i3) 

To reuse the values in the loop, for each fixed pair (i1, i3) and (i1±1, i3±1) we introduce three 

variables declared as private – r1, r1_p1 and r1_m1 which will correspond to i2, i2+1, i2-

1indexes. Then it is necessary to read data in r1_m1 and r1 before main loop, to add reading 

in r1_p1 in the loop before computations, to change the appropriate expressions in the loop by 

read ones, and after computations – to save r1 and r1_p1 values in r1_m1 and r1 variables 

correspondently for next iteration. After all transformations there will be 5 groups in the loop 

(see Fig. 3.2). 

!DVM$ PARALLEL (i3,i2,i1) ON u(i1,i2,i3) 

do i3=2,n3-1) 

do i2=2,n2-1 

do i1=2,n1-1 

u(i1,i2,i3) = u(i1,i2,i3) + c(0) * r(i1,i2,i3) + c(1) * 

( r(i1-1,i2,i3) + r(i1+1,i2,i3) + r(i1,i2-1,i3) + r(i1,i2+1,i3) 

+ r(i1,i2,i3-1) + r(i1,i2,i3+1) ) + c(2) * (r(i1,i2-1,i3-1) 

+ r(i1,i2+1,i3-1) + r(i1,i2-1,i3+1) + r(i1,i2+1,i3+1) 

+ r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3) + r(i1-1,i2,i3-1) 

+ r(i1-1,i2,i3+1) + r(i1+1,i2-1,i3) + r(i1+1,i2+1,i3) 

+ r(i1+1,i2,i3-1) + r(i1+1,i2,i3+1)) 

enddo 

enddo 

enddo 



 

 

Fig. 3.2. The loop of psinv procedure after transformations 

Thereby the number of necessary readings from global memory significantly reduced due 

to saving already read values in i2 loop upon transition from one iteration to another. On the 

class С the program runtime was reduced by 50% in comparison with the program without 

these optimizations, however the program runtime on the CPU became much worse. 

4. Implementation and features of the BT, SP, LU tests 

4.1 Review of dependence types 

To understand nature of data dependency better we abstract from algorithm of each of the 

tests and will consider standard programs, namely – the method of alternating directions used 

in BT and SP tests and the method of successive over relaxation (Successive over relaxation - 

SOR)  used in LU test. 
The sample program for method of alternating directions is shown below (see Fig. 4.1).

!DVM$ PARALLEL (i3,i1) ON u(i1,*,i3) 

!DVM$& ,PRIVATE (i2, r1,r1_m1,r1_p1, r2,r2_m1,r2_p1, r3,r3_m1,r3_p1, 

r4,r4_m1,r4_p1, r5,r5_m1,r5_p1) 

do i3=2,n3-1 

do i1=2,n1-1 

r1_m1 = r(i1,1,i3) ! loading of initial values before the loop 

r1 = r(i1,2,i3) 

r2_m1 = r(i1-1,1,i3) 

r2 = r(i1-1,2,i3) 

r3_m1 = r(i1+1,1,i3) 

r3 = r(i1+1,2,i3) 

r4_m1 = r(i1,1,i3+1) 

r4 = r(i1,2,i3+1) 

r5_m1 = r(i1,1,i3-1) 

r5 = r(i1,2,i3-1) 

 

do i2=2,n2-1 

r1_p1 = r(i1,i2+1,i3) ! loading of next values 

r2_p1 = r(i1-1,i2+1,i3) 

r3_p1 = r(i1+1,i2+1,i3) 

r4_p1 = r(i1,i2+1,i3+1) 

r5_p1 = r(i1,i2+1,i3-1) 

 

u(i1,i2,i3) = u(i1,i2,i3)+ 

c_0 * r1 + c_1 * (r2 + r3 + r1_m1 + r1_p1 + r4 + r5) + 

c_2 * (r4_m1 + r4_p1 + r5_m1 + r5_p1 + r2_m1 + r2_p1 + 

r(i1-1,i2,i3-1) + r(i1-1,i2,i3+1) + r3_m1 + r3_p1 + 

r(i1+1,i2,i3-1) + r(i1+1,i2,i3+1)) 

 

r1_m1 = r1 ! saving of read values 

r1 = r1_p1 

r2_m1 = r2 

r2 = r2_p1 

r3_m1 = r3 

r3 = r3_p1 

r4_m1 = r4 

r4 = r4_p1 

r5_m1 = r5 

r5 = r5_p1 

enddo 

 

enddo 

enddo 



 

 

Fig.4.1. Implementation of the method of alternating directions 

There are three tightly-nested loops in the program and there is a dependence on one of 

three dimensions in each of the loops. In the first nest of loops the most inner loop can be 

executed only sequentially since there is the dependency on data of A array. In this regard – if 

this loop is executed on GPU –a time of reading from memory will be large because data for 

parallel iterations of the remained two loops will be located not in a row. One of the ways to 

solve this problem is to reorder two first dimensions of A array. But then the similar problem 

will arise in the second nest of loops. It is possible to solve the problem similarly, for 

example, to reorder first two dimensions back. Therefore, it is impossible to select initial 

arrangement of the array so that all three nests of the loops will be executed most efficiently. 

Let's consider the example of other program implementing a method of successive over 

relaxation (see Fig. 4.2). There is only one nest of loops in this program where computations 

are performed. Unlike a method of alternating directions in this method the main loop has 

dependence on all its dimensions. It results in considerable difficulties of parallelization even 

in OpenMP model. 

  

program sor 

parameter(n1=1000,n2=1000,n3=1000,itmax=100, 

maxeps=0.5e-6,w=0.5) 

real a(n1,n2,n3), eps, w 

integer itmax 

 

call init(a, n1, n2, n3) 

do it = 1,itmax 

3 

program adi 

parameter(nx=400,ny=400,nz=400,maxeps=0.01,itmax=100) 

integer nx,ny,nz,itmax 

double precision eps,relax,a(nx,ny,nz) 

call init(a,nx,ny,nz) 

do it = 1,itmax 

eps=0.D0 

do k = 2,nz-1 

do j = 2,ny-1 

do i = 2,nx-1 

a(i,j,k) = (a(i-1,j,k) + a(i+1,j,k)) / 2 

enddo 

enddo 

enddo 

do k = 2,nz-1 

do j = 2,ny-1 

do i = 2,nx-1 

a(i,j,k) = (a(i,j-1,k) + a(i,j+1,k)) / 2 

enddo 

enddo 

enddo 

do k = 2,nz-1 

do j = 2,ny-1 

do i = 2,nx-1 

eps = max(eps, abs(a(i,j,k) - a(i,j,k-1)+a(i,j,k+1)) / 2)) 

a(i,j,k) = (a(i,j,k-1)+a(i,j,k+1)) / 2 

enddo 

enddo 

enddo 

if(eps.lt.maxeps) goto 3 

enddo 

continue 

end 



 

 

Fig.4.2. Implementation of successive over relaxation method 

4.2 Algorithm of mapping of loops with dependences in DVM system 

The following algorithm is used in DVM system [12] to map these loops. А set of tuples 

of all possible values of index loop variables will be called a space of the loop iterations. 

There are flow- and anti- dependencies for I, J and K dimensions in the considered loop, 

therefore its space of iterations can't be mapped on the block of GPU threads since all threads 

are executed independently. One of the known methods of such loop mapping is the method 

of hyperplanes. All elements of a hyperplane can be calculated independently from each other.   

Such order of execution of the loop iterations causes a problem of efficient access to 

global memory because not adjacent elements of arrays are processed in parallel. That results 

in considerable performance losses (approximately 10 times). And unlike the first considered 

program it will be even more difficult to specify initial arrangement of the array as the 

elements are calculated by hyperplanes. Existence in the program of the loops with 

dependences on more than one dimension and loops without dependences complicates the 

problem since different arrangement of data for such loops is required for their efficient 

execution. 

To free a programmer from the described above difficulties, the following possibilities are 

in FDVMH language:  the support of loops with dependences using ACROSS specification in 

PARALLEL directive and dynamic rearrangement of arrays. 

4.3 ACROSS specification 

The implementation of ACROSS specification is based on the method of hyperplanes 

described above. To specify that the loop has a dependence, it is necessary to add the list of 

arrays with dependence to ACROSS specification (see Fig. 4.3). 

  
 

!example for the method of alternating directions 

!DVM$ PARALLEL (k,j,i) on A(i,j,k), ACROSS(A(1:1,0:0,0:0)) 

do k = 2,nz-1 

do j = 2,ny-1 

do i = 2,nx-1 

a(i,j,k) = (a(i-1,j,k) + a(i+1,j,k)) / 2 

enddo 

enddo 

enddo 

4 

eps = 0. 

do k = 2, n3-1 

do j = 2, n2-1 

do i = 2, n1-1 

s = a(i,j,k) 

a(i,j,k) = (w/4)*( a(i-1,j,k)+a(i+1,j,k)+ 

a(i,j-1,k)+a(i,j+1,k)+ a(i,j,k-1)+a(i,j,k+1)) 

+ (1-w)*a(i,j,k) 

eps = max(eps, abs(s - a(i,j,k))) 

enddo 

enddo 

enddo 

if (eps .lt. maxeps) goto 4 

enddo 

continue 

end 



 

 

Fig. 4.3. Usage of  ACROSS specification for two methods 

4.4 Mechanism of dynamic rearrangement of arrays in DVMH 

To optimize an access to global memory of GPU the mechanism of dynamic 

rearrangement of arrays has been implemented in DVMH runtime system. Before parallel 

loop execution on GPU the correspondence between the loop dimensions and dimensions of 

arrays used in the loop is verified and if it is necessary some arrays are rearranged so that the 

access to elements will be performed in the best way: adjacent threads of the block will 

operate with adjacent cells of global memory.  

The mechanism performs any necessary rearrangement of array dimensions and also so 

called diagonal transformation, which makes adjacent elements on diagonals (on the plane of 

certain two dimensions) to be stored in adjacent memory cells. It enables to apply a technique 

of execution of the loop with dependencies by the hyperplanes without considerable 

performance losses on access operations to GPU global memory.  

4.5 Transformation of source program codes 

In BT and SP tests the method of alternating directions is used. In LU test SSOR 

(symmetric successive over relaxation) method is used.  It consists of two three-dimensional 

loops with positive and negative steps with three dependent dimensions. 

To parallelize the loops using FDVMH it is necessary to transform the program so that the 

loops will be tightly-nested. For example, in LU test the  blts and buts procedures were 

substituted in order to obtain three-dimensional tightly-nested loops. In SP and BT tests the 

loops in compute_rhs procedure were combined for more effective execution. In x_solve, 

y_solve and z_solve procedures implementing a method of alternating directions temporary 

arrays were expanded by one dimension in order to three-dimensional loops could be 

executed on GPU. 

4.6 Optimization of obtained programs 

A programmer, using high-level FDVMH language, operates with the serial version of the 

program. Therefore, it is necessary to write the "good" serial program in order to obtain from 

it efficient parallel program. The knowledge of target architecture can be useful for 

optimization performing. 

The modern CPUs have three-level cache. A size of first level cache is equal to 64KB and 

it exists on all computing cores of the processor. The size of the second level cache is varied 

from 1 to 2 MB. The cache of the third level is common for whole CPU and its size is 12-

15MB. 

The modern GPUs have a two-level cache. A size of the first level cache is equal to 

!example for SOR method 

!DVM$ PARALLEL (K,J,I) on A(I,J,K), ACROSS(A(1:1,1:1,1:1)) 
!DVM$& ,PRIVATE(s), REDUCTION(MAX(eps)) 

do k = 2, n3-1 

do j = 2, n2-1 

do i = 2, n1-1 

s = a(i,j,k) 

a(i,j,k) = (w/4)*( 

> a(i-1,j,k)+a(i+1,j,k)+ 

> a(i,j-1,k)+a(i,j+1,k)+ 

> a(i,j,k-1)+a(i,j,k+1)+ 

> ) + (1-w)*a(i,j,k) 

eps = max(eps, abs(s - a(i,j,k))) 

enddo 

enddo 

enddo 

 



 

64KB. It is used for shared memory and displacement of registers. Not more than 48KB is 

available for shared memory. It exists in each computational block. The maximum size of the 

second level cache is 1,5MB and it is common for whole GPU. It is used to cache the data 

loaded from global memory of GPU. There are 15 computational blocks in modern GPU chip 

GK110. So there are about 48KB of first level cache and 102KB of second level cache per 

one block. In comparison with CPU, it isn't enough, therefore read operations from global 

memory of graphic processor are more expensive than from RAM of central processor. All 

optimizations will be directed to decrease a number of readings from global memory and to 

increase computational loading. Thereby the ratio of the number of computing operations to 

read operations from global memory of GPU is raised. 

4.6.1 LU test 

The main computational loading is concentrated in four loops of blts and bult procedures. 

In each of the procedures at first the initialization of four arrays of double precision type is 

performed. The size of the arrays is equal to 25 * Class3, where Class is the size of the 

considered task class (for example, Class = 162 for class C). As a result, the class C requires 

about 3 GB of memory. As after initialization the next nest of the loops has dependence on 

three dimensions, then according to described above principle of DVMH program 

functioning, the diagonalization of these arrays will be performed. As after initialization the 

arrays are used only in blts and bult procedures, the expressions for initialization of the array 

elements were substituted directly in the body of the loop nest with dependence, and the 

arrays were deleted that caused a recalculation of the values of these arrays on each iteration. 

Thereby the execution of this test on C class requires by 3 GB less memory that allowed to 

launch the program on Tesla c2050 GPU. 

One more transformation applied to the test is the use of private variables for frequently 

used elements of arrays mapped on registers by NVCC compiler. The array element is 

frequently used if, first of all, the quantity of writings and readings is more, than the number 

of readings for its loading on registers and writing for saving. To explain it let’s consider the 

following fragment of the program (see Fig. 4.4). 

  

Fig. 4.4. Source loop 

In this fragment U array is used on reading and writing, and the array isn't distributed on 

last dimension. 15 writings and 45 readings are performed in total. And for loading on 

registers 5 readings are required and the same number of readings will be required to save the 

result. As a result, it is necessary to add in the program code two loops for the array loading 

and saving, and also to replace all accesses in the loop body by new variable (see Fig. 4.5) 

!DVM$ PARALLEL (k,j,i) on u(i,j,k,*), PRIVATE(m1,m2,m) 

do k = 2,nz-1 

do j = 2,ny-1 

do i = 2,nx-1 

m1 = 2 

m2 = 3 

do m = 1,5 

u(i,j,k,m) = u(i,j,k,m1) + u(i,j,k,m2) 

enddo 

do m = 1,5 

u(i,j,k,m) = u(i,j,k,m1+1) + u(i,j,k,m2+1) 

enddo 

do m = 1,5 

u(i,j,k,m) = u(i,j,k,m1-1) + u(i,j,k,m2-1) 

enddo 

enddo 

enddo 

enddo 



 

 

Fig. 4.5. Applying of optimization – replacement of u array by u_ array 

4.6.2 BT test 

As it was described above the largest computational loading in the test is concentrated in 

three procedures – x_solve, y_solve, z_solve. Since these procedures differ only in the 

dependent dimension (x, y and z correspondently), the optimizations, applied to one of them, 

will be also applied also to all remaining. Let’s consider x_solve  procedure. It is possible to 

see that in x_solve procedure the large temporary lhs array of double precision type is used, 

its size is equal to 75 * Class3, where Class is the task class (for example, Class = 162 for the 

class C). Thereby, this array on the class C requires about 2,3 GB of memory. We have the 

same problems, as for LU test: lack of memory and long time of dynamic rearrangement. It is 

possible to solve the problem by described above method – to reduce the array size by re-

initialization of the array elements directly in loop body of  x_solve procedure. Thus, due to 

the task specifics the auxiliary array can be reduced by one dimension, namely, in the number 

of times corresponding to the task class. For the class C the array is reduced by 162 times and 

will require about 15 MB. 

4.6.3 SP test 

Since this test differs from BT in the algorithm used in x_solve procedure, and the 

dependence is the same, all described optimizations are applied similarly. The temporary lhs 

array of the double precision type is used initially, its size is 15 * Class3. For the class C the 

array requires about 500 MB memory and it is impossible to reduce it in the program. 

5. The obtained results. Comparison with OpenCL. 

To estimate of efficiency of FDVMH parallelization two versions of each of programs 

were used: source serial version without any transformations and transformed and optimized 

version with FDVMH directives. Testing was performed on K100 supercomputer [14] with 

Intel Xeon X5670 processors and NVIDIA Tesla C2050 GPUs of Fermi architecture and on 

Titan server with Intel core i7 processors and NVIDIA GeForce GTX GPU of the newest 

!DVM$ PARALLEL (k,j,i) on u(i,j,k,*), PRIVATE(m1,m2,m,u_) 

do k = 2,nz-1 

do j = 2,ny-1 

do i = 2,nx-1 

do m=1,5 
u_(m) = u(i,j,k,m) 

enddo 

m1 = 2 

m2 = 3 

do m = 1,5 

u_(m) = u_(m1) + u_(m2) 

enddo 

do m = 1,5 

u_(m) = u_(m1+1) + u_(m2+1) 

enddo 

do m = 1,5 

u_(m) = u_(m1-1) + u_(m2-1) 

enddo 

do m=1,5 

u(i,j,k,m) = u_(m) 

enddo 

enddo 

enddo 

enddo 



 

Kepler architecture. For comparison, there were obtained execution times of these tests 

implemented on low-level OpenCL language by researchers from the Seoul national 

university [11]. 

The results of comparison of parallelization efficiency for BT, LU, SP, MG, EP tests on 

A, B, C classes are shown below (see Table 5.1; Fig. 5.1). The acceleration of FDVMH 

versions of the tests in comparison with OpenCL is shown in Fig. 5.1. The times and the 

accelerations of FDVMH and OpenCL programs in comparison with source serial versions of 

the tests executed on one core of Intel Xeon X5670 processor are shown in Table 5.1. A dash 

in the table cells means that for corresponding variants of the test launches there wasn't 

enough memory on GPU. Note that implementation of OpenCL version of BT test on  C class 

requires more than 6 GB of memory (4 times more, than FDVMH program requires) that 

didn't allow to compare OpenCL and FDVMH versions of the test. 

Table 5.1. Efficiency of test parallelization 

Program CPU, 

Xeon 

X5670 

FORTRAN DVMH OpenCL 

Tesla C2050 

(with ECC) 

GeForce GTX 

Titan  

(without ECC) 

Tesla C2050 

(with 

ECC) 

GeForce GTX 

Titan  

(without ECC) 

Test 

 

 

Class 
 Time, 

seconds 

Time, 

seconds 

Accele

ration 

Time, 

seconds 

Accele

ration 

Time, 

seconds 

Accele

ration 

Time, 

seconds 

Accele

ration 

 

BT 

A 52,69 15,63 3,37 5 10,54 75,5 0,7 22,41 2,35 

B 221,9 61,74 3,59 18,7 11,87 272,42 0,81 71,7 2,97 

C 951,0 192,29 4,94 56,86 16,73 - - - - 

 

SP 

A 36,6 9,82 3,73 3,23 11,33 22,95 1,59 6,09 6,01 

B 154,7 33,4 4,63 11,37 13,61 86,35 1,79 28,53 5,42 

C 637,73 117,55 5,43 35 18,22 433,77 1,47 137,7 4,63 

 

LU 

A 40,31 7,0 5,76 5,14 7,84 8,86 4,55 4,49 8,9 

B 170 21,0 8,10 12,51 13,59 30,23 5,62 13,49 12,6 

C 779 70,5 11,05 37,46 20,80 127,95 6,09 44,65 17,4 

 

MG 

A 1,41 0,18 7,8 0,11 12,8 0,20 7,05 0,09 20 

B 6,62 0,82 8,07 0,50 13,24 0,94 7,04 0,42 15,7 

C 55,17 5,62 9,8 3,08 17,9 7,83 7,04 3,71 14,8 

 

EP 

A 7,97 0,24 33,2 0,38 20,9 0,25 31,88 0,43 18,5 

B 31,85 0,73 43,6 1,12 28,4 0,82 38,8 1,26 25,2 

C 55,17 2,68 20,5 4,14 13,3 2,89 19 4,51 12,2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Acceleration of DVHM programs in comparison with OpenCL programs. 
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The quantity of lines and words in the considered programs, and also amount of used 

memory are shown in Table 5.2. In certain cases DVMH requires more memory for 

performing of dynamic rearrangement of the arrays. In the table the amount of memory for 

DVMH programs consists of amount of memory without use of dynamic rearrangement and 

amount of memory, necessary for dynamic rearrangement. 

Table 5.2. Use of memory and quantity of lines and words 

 
Task 
 

Sourse version DVM version OpenCL version 

Test Class 

memory, 

GB  

quantity of 

lines, words 

memory, GB  quantity of 

lines, words 

memory, 

GB 

quantity of 

lines, 

words 

 

BT 

A 0,041 4092, 
13588 

0,088+0,044 3478, 
18427 

0,346 14678, 
55932 B 0,166 0,356+0,175 1,2 

C 0,665 1,425+0,79 > 6 

 

SP 

A 0,043 3469, 
10547 

0,063+0,005 3437, 
10744 

0,154 11179, 
41714 B 0,174 0,253+0,04 0,340 

C 0,698 1,014+0,158 1,38 

 

LU 

A 0,036 4148, 
18173 

0,039+0,005 2682, 
15772 

0,116 9439, 
41426 B 0,142 0,158+0,04 0,249 

C 0,558 0,634+0,158 0,776 

 

MG 

A 0,440 1686, 
5028 

0,518 2315, 
7713 

0,503 4030, 
13791 B 0,440 0,518 0,503 

C 3,31 3,50 3,55 

 

EP 

A 0,07 659, 
2614 

0,1 704, 
2865 

0,1 928, 
3792 B 0,07 0,1 0,1 

C 0,07 0,1 0,1 
 

6. Conclusion 

As a result of researches LU, BT, SP, MG and EP tests optimized and parallelized by 

FDVMH were obtained. A laboriousness of parallelization by FDVMH and OpenCL can be 

estimated roughly by quantity of lines or words added in the source program. In Table 5.2 it 

is possible to see that the size of the obtained DVMH programs differs from size of source 

serial ones not more than by 45%. The size of OpenCL programs is differed by 2-3 times. In 

tests with dependences performance of OpenCL programs is extremely small. Parallelization 

efficiency of FDVMH version of EP test is insignificantly higher then parallelization 

efficiency of OpenCL version of the test. Parallelization efficiency of DVMH version of MG 

test is higher than parallelization efficiency of OpenCL version of the test by 50% if to use 

Fermi architecture, and by 25% if to use Kepler architecture, on C class. If to consider 

resource-intensive tasks (class C), then FDVMH programs showed higher efficiency, than 

OpenCL on all considered tests. 

In the further it is intended to parallelize remaining tests by FDVMH and to compare 

them with implementations on OpenCL and OpenACC. The researches of parallelization 

efficiency of the tests on Intel Xeon Phi platform are intended also. 
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