
Parallelization of Jacobi algorithm in Fortran-DVMH

It is best of all to start first acquaintance with DVM system with a small example.
Let’s consider small program performing some conversions of a matrix. In principle the sense of

conversions doesn’t matter for us now, but we want they will be executed quickly, and the result
of computations will remain the same. How to achieve it? –– to parallelize the program. And, of
course, for this purpose we will use the DVMH technology.

Consider the source program. Full source codes are available at the end of this article. All
computations are done over array B and there is an auxiliary array of A except it:

 program jac

 parameter (L=16000 , M=6250 , ITMAX =200)

 real A(L,M), eps , MAXEPS , B(L,M)

...

 MAXEPS = 0.5e-7

Before start of computations the array B is initialized:

 do j = 1, M

 do i = 1, L

 A(i,j) = 0.

 if(i.eq.1 .or. j.eq.1 .or. i.eq.L .or. j.eq.M) then

 B(i,j) = 0.

 else

 B(i,j) = (1. + i + j)

 endif

 enddo

 enddo

Then the iterative Jacobi algorithm is applied:

 do it = 1, ITMAX

 eps = 0.

 ! variable eps is used for calculation of maximum value

 do j = 2, M-1

 do i = 2, L-1

 eps = max(eps , abs(B(i,j) - A(i,j)))

 A(i,j) = B(i,j)

 enddo

 enddo

 do j = 2, M-1

 do i = 2, L-1

 B(i,j) = (A(i-1,j) + A(i,j-1) + A(i+1,j) + A(i,j+1)) / 4

 enddo

 enddo

 print 200, it, eps

 200 format(’ it = ’, i4 , ’ eps = ’, e14.7)

 if (eps .lt. MAXEPS) goto 3

 enddo

 3 continue

To obtain ready-to-run DVM program, it is necessary to do two things:
• to distribute data

1

• to distribute computations over these data.

As the DVM program can be executed on a cluster, it is possible to imagine that our program
will consist of the separate MPI processes launched on different nodes of the cluster. And our task
distributes to each MPI process its own portion of data and its own part of job.

To realize the first (to distribute data) it is enough to add directives:

 real A(L,M), eps , MAXEPS , B(L,M)

...

 !dvm$ distribute (block , block) :: A

 !dvm$ align B(i,j) with A(i,j)

 ! arrays A and B with block distribution

It means that the array A will be uniformly partitioned into parts along two dimensions and
obtained submatrixes will be distributed over MPI processes. That is each MPI process will receive
submatrix A(i1:i2, j1:j2). Moreover, the array B will be distributed in the same way and each
submatrix B(i1:i2, j1:j2) will be received by the same MPI process, as the appropriate submatrix
A(i1:i2, j1:j2).

Now, to distribute computations, it is necessary to find code fragments where the distributed
data are used. In our case there are three two-dimensional loops which operate with arrays A and B.

Let’s begin with an initialization loop. This loop is executed only once at the beginning of the
program and doesn’t take a lot of time but when we distributed arrays, each MPI process must check
there will be no access to array elements, belonging to other MPI processes. Therefore this loop will
be executed more slowly and it is quite good to parallelize it. For this purpose it is enough to add
parallel directive:

 !dvm$ parallel (j,i) on A(i,j)

 ! nest of two parallel loops , iteration (i,j) will be executed on

 ! processor , which is owner of element A(i,j)

 do j = 1, M

 do i = 1, L

 A(i,j) = 0.

 if(i.eq.1 .or. j.eq.1 .or. i.eq.L .or. j.eq.M) then

 B(i,j) = 0.

 else

 B(i,j) = 1. + i + j

 endif

 enddo

 enddo

It means that the iteration (j,i) should be executed only by that MPI process the element A(i,j)
belongs to. Thus, MPI processes, working in parallel, will execute only intended to them iterations
of the loop.

Further, it is necessary to parallelize loops inside Jacobi algorithm similarly:

 !dvm$ parallel (j,i) on A(i,j), reduction(max(eps))

 ! variable eps is used for calculation of maximum value

 do j = 2, M-1

 do i = 2, L-1

 eps = max(eps , abs(B(i,j) - A(i,j)))

 A(i,j) = B(i,j)

 enddo

 enddo

2

 !dvm$ parallel (j,i) on B(i,j), shadow_renew(A)

 ! copying shadow elements of array A from

 ! neighbouring processors before loop execution

 do j = 2, M-1

 do i = 2, L-1

 B(i,j) = (A(i-1,j) + A(i,j-1) + A(i+1,j) + A(i,j+1)) / 4

 enddo

 enddo

There were necessary to use additional clauses reduction and shadow renew in these two loops.
In the first loop variable eps meets which should contain maximum of the calculated values on

each iteration. We know that MPI process executes only its own iterations of parallel loop. Therefore,
after the first loop execution its eps variable will have the maximum value calculated only among its
iterations. Thus to compute a maximum of eps among all iterations, it is necessary after the loop
finishing to find the maximum among eps of all MPI processes. The clause reduction(max(eps))
does it after the loop finishing and perform all necessary actions and all MPI processes will have
identical values of own eps variables, equal maximum among calculated on all iterations of the loop.

In the second loop there is access from iteration (j,i) to the array elements A(i-1,j), A(i,j-1)
and so on. So, MPI process which owns an element A(i,j) and executes iteration (j,i), tries
to access to the element A(i-1,j) which can belong to adjacent MPI process. As MPI process
can’t access directly to memory of other MPI process, it should preliminarily copy data to it-
self. Such copying can be provided by specifying shadow renew. If MPI process owns subma-
trixes A(i1:i2,j1:j2), shadow renew(A) will copy to it submatrixes A(i1-1,j1:j2), A(i2+1,j1:j2),
A(i1:i2,j1-1), A(i1:i2,j2+1) before loop beginning.

The area formed by these submatrixes is called shadow edges. It is possible to change the size of
shadow edges by shadow directive, but here it isn’t required as the current size suits us.

At this step we have DVM program which we can launched, for example, on a cluster and we can
see that the program is speed up. However, the program uses only MPI for parallel execution, but
if this cluster has graphic accelerators (GPU), they will remain unused. To use them, it is required
very little, namely, to specify, what fragments of the program should be executed on GPU and, if
necessary, to specify, what data should be copied from a random access memory in GPU memory or
back.

Regions (code fragments which can be executed on GPU) should contain parallel loops. If to look
at our program, it is visible that the parallel loops are simple and can be included into regions. We
do it:

 !dvm$ region out(A, B)

 !dvm$ parallel (j,i) on A(i,j)

...

3

 enddo

 !dvm$ end region

...

 !dvm$ region

 !dvm$ parallel (j,i) on A(i,j), reduction(max(eps))

...

 enddo

 !dvm$ parallel (j,i) on B(i,j), shadow_renew(A)

...

 enddo

 !dvm$ end region

After specifying regions in the program, it is necessary to supply data copying between random
access memory and memory of GPU to guarantee that updated data will be move there where they
are necessary.

For initialization loop it’s nothing to do: arrays A and B will be created and initiated on the
graphic accelerator. Next region is the region in Jacobi algorithm which operates with these arrays
already located in GPU memory, therefore they don’t need to be copied too. However, eps value is
calculated in the region and after the region eps is printed on the screen. So it is necessary to copy
eps from the region to random access memory. Directive get actual is used for this purpose:

 enddo

 !dvm$ end region

 !dvm$ get_actual(eps)

 print 200, it, eps

Now eps value calculated on GPU will be printed, but not 0 written prior to the region beginning.
On the following iteration it, the same region is executed again. The eps variable already met earlier
and kept its value on GPU so this value will be used when reading, but not value, assigned before
the region. To correct a situation it is necessary to report that new value of variable eps should be
taken from a random access memory. Directive actual can be used for it:

 eps = 0.

 !dvm$ actual(eps)

 !dvm$ region

We obtain working implementation of Jacobi algorithm which can be executed on a cluster with
GPU, but the calculated matrix B still locates in GPU memory. If we want to print it, for example,
it needs to be returned to a random access memory by get actual directive:

 enddo

 3 continue

 !dvm$ get_actual(B)

Now all. We obtained the final version of the DVMH program.

4

Startup of DVMH program

We will try to compile and launch the obtained DVMH program. To do that we need the computer
on which the DVM system is installed. We have a PC with processor Intel Core i7-3770 3.40GHz
and graphics card GeForce GTX Titan.

In a directory where our program jac2d.fdv is located, it is necessary to copy dvm script from the
directory where DVM system is installed.

$ ls

dvm jac2d.fdv

Now we can to compile our program.

$./dvm f jac2d.fdv

$ ls

dvm jac2d jac2d.fdv

The executable file jac2d appears in the current directory. It can be launched using dvm script,
but previously it is necessary to set start parameters, having edited dvm script.

#--------------- DVMH options:

export DVMH_PPN=’1’ # Number of processes per node

export DVMH_NUM_THREADS =’0’ # Number of CPU threads per process

export DVMH_NUM_CUDAS =’1’ # Number of GPUs per process

Setting such parameters, we report that we want to execute regions only on one graphic acceler-
ator. Now we can launch the program:

$./dvm run jac2d

...

IT = 197 EPS = 0.4086035E+02

IT = 198 EPS = 0.4062500E+02

IT = 199 EPS = 0.4044824E+02

IT = 200 EPS = 0.4021777E+02

time = 3.176400

The program successfully performed in 3.17 seconds. For comparing, we can to compile the same
source text by usual compiler, to obtain the sequential program and to launch it:

$ cp jac2d.fdv jac2d.f

$ ifort -O3 jac2d.f

$./a.out

...

IT = 197 EPS = 0.4086035E+02

IT = 198 EPS = 0.4062500E+02

IT = 199 EPS = 0.4044824E+02

IT = 200 EPS = 0.4021777E+02

time = 27.48160

The results of execution are the same, but execution time was much more long.

Source code of programs

Serial version of the program

 program jac

5

 parameter (L=16000 , M=6250 , ITMAX =200)

 real A(L,M), eps , MAXEPS , B(L,M)

 integer clock_rate , clock_start , clock_end

 print *, ’********** test_jacobi ********** ’

 MAXEPS = 0.5e-7

 do j = 1, M

 do i = 1, L

 A(i,j) = 0.

 if(i.eq.1 .or. j.eq.1 .or. i.eq.L .or. j.eq.M) then

 B(i,j) = 0.

 else

 B(i,j) = (1. + i + j)

 endif

 enddo

 enddo

 call system_clock(count_rate = clock_rate)

 call system_clock(count = clock_start)

 do it = 1, ITMAX

 eps = 0.

 ! variable eps is used for calculation of maximum value

 do j = 2, M-1

 do i = 2, L-1

 eps = max(eps , abs(B(i,j) - A(i,j)))

 A(i,j) = B(i,j)

 enddo

 enddo

 do j = 2, M-1

 do i = 2, L-1

 B(i,j) = (A(i-1,j) + A(i,j-1) + A(i+1,j) + A(i,j+1)) / 4

 enddo

 enddo

 print 200, it, eps

 200 format(’ it = ’, i4 , ’ eps = ’, e14.7)

 if (eps .lt. MAXEPS) goto 3

 enddo

 3 continue

 call system_clock(count=clock_end)

 print *, ’time = ’, real(clock_end - clock_start) / clock_rate

 end

DVMH version of the program

 program jac

 parameter (L=16000 , M=6250 , ITMAX =200)

6

 real A(L,M), eps , MAXEPS , B(L,M)

 integer clock_rate , clock_start , clock_end

 !dvm$ distribute (block , block) :: A

 !dvm$ align B(i,j) with A(i,j)

 ! arrays A and B with block distribution

 print *, ’********** test_jacobi ********** ’

 MAXEPS = 0.5e-7

 !dvm$ region out(A, B)

 !dvm$ parallel (j,i) on A(i,j)

 ! nest of two parallel loops , iteration (i,j) will be executed on

 ! processor , which is owner of element A(i,j)

 do j = 1, M

 do i = 1, L

 A(i,j) = 0.

 if(i.eq.1 .or. j.eq.1 .or. i.eq.L .or. j.eq.M) then

 B(i,j) = 0.

 else

 B(i,j) = 1. + i + j

 endif

 enddo

 enddo

 !dvm$ end region

 call system_clock(count_rate = clock_rate)

 call system_clock(count = clock_start)

 do it = 1, ITMAX

 eps = 0.

 !dvm$ actual(eps)

 !dvm$ region

 !dvm$ parallel (j,i) on A(i,j), reduction(max(eps))

 ! variable eps is used for calculation of maximum value

 do j = 2, M-1

 do i = 2, L-1

 eps = max(eps , abs(B(i,j) - A(i,j)))

 A(i,j) = B(i,j)

 enddo

 enddo

 !dvm$ parallel (j,i) on B(i,j), shadow_renew(A)

 ! copying shadow elements of array A from

 ! neighbouring processors before loop execution

 do j = 2, M-1

 do i = 2, L-1

 B(i,j) = (A(i-1,j) + A(i,j-1) + A(i+1,j) + A(i,j+1)) / 4

 enddo

 enddo

 !dvm$ end region

7

 !dvm$ get_actual(eps)

 print 200, it, eps

 200 format(’ it = ’, i4 , ’ eps = ’, e14.7)

 if (eps .lt. MAXEPS) goto 3

 enddo

 3 continue

 !dvm$ get_actual(B)

 call system_clock(count=clock_end)

 print *, ’time = ’, real(clock_end - clock_start) / clock_rate

 end

8

