

Fortran DVMH language.

Fortran DVMH compiler.

Compilation, execution and debugging of DVMH

programs.

Table of contents

1 Introduction .. 2

2 Glossary ... 3

2.1 Description of hardware computational systems ... 3

2.2 The description of virtual computational systems where DVMH program can be

executed ... 3

3 DVMH model and different architectures .. 4

4 Parallelization of Fortran-DVMH programs ... 5

4.1 Distribution of arrays and parallel loops .. 5

4.1.1 Distribution of arrays. DISTRIBUTE and REDISTRIBUTE directives. 6

4.1.2 Data localization. ALIGN and REALIGN directives. 9
4.1.3 Distribution of parallel loop iterations. PARALLEL directive. 11

4.2 Private variables ... 12
4.3 Remote data. Their types and specifications.. 13

4.3.1 Data localization. Alignment with template.. 13

4.3.2 Remote data of SHADOW type .. 14
4.3.3 Remote data of ACROSS type .. 15

4.3.4 Remote data of REMOTE type ... 15
4.3.5 Remote data of REDUCTION type .. 16
4.3.6 Multidimensional arrays... 16

4.4 Specification of regions for execution on accelerators .. 16
4.5 Control of data movement between CPU memory and memory of accelerators 18

4.6 The distributed arrays in COMMON blocks and EQUIVALENCE statements . 19
4.7 Procedures in parallel program .. 20
4.8 Input-output ... 21

5 DVMH program execution scheme .. 22

6 Compilation, execution and debugging of DVMH programs 22

6.1 What is DVMH program? .. 22
6.2 DVM system tuning ... 23

6.3 Method of DVMH programs debugging ... 23

6.3.1 Serial execution and debugging using standard Fortran compiler and standard

debugging tools ... 23

 2

6.3.2 Functional debugging of parallel program .. 23
6.3.3 Compilation and execution of DVMH programs on cluster with accelerators 27
6.3.4 Debugging parallel program performance .. 28

7 References ... 32

8 The example of Jacobi program in the Fortran-DVMH language 32

Annex 1. Syntax of FDVMH directives ... 34

Annex 2. Environment variables for DVMH-programs 40

Annex 3. Compilation options for DVMH programs .. 41

Annex 4. Diagnostics messages of DVMH debugger 42

1. Dynamical control ... 42
2. Trace accumulation and comparison ... 43
3. Structure of trace configuration file ... 44

4. Execution trace structure ... 44

Annex 5. Error messages of statistics accumulation 46

1 Introduction

In recent years many computing clusters with accelerators in their nodes have been

appeared. Most of them are graphics processors of NVIDIA company. The clusters with

accelerators of other architecture – Xeon Phi by Intel Corporation – was appeared in 2012.

The model of parallel programming for clusters with accelerators was developed at

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences in 2011. The

model is extension of DVM model and is called DVMH (DVM for Heterogeneous

systems).

The Fortran-DVMH (FDVMH) language developed within the model simplifies a

process of parallel program writing, and also allows to convert the program for cluster

(DVM program) to the program for cluster with accelerators (DVMH program) with small

changes.

The FDVMH language is FORTRAN 95 language extended by parallelism

specifications. These specifications are implemented as special comments called directives.

The directives "are invisible" to standard compilers. It allows to have single version of the

program for sequential and parallel execution.

The FDVMH language allows to write the program (DVMH program) which can be

executed both as sequential and as parallel one for clusters with accelerators and without

accelerators.

 3

 The tools for functional debugging and performance debugging are developed for

DVMH programs.

The main work on implementation of parallel program execution model is

performed by DVMH runtime system (RTS – RunTime System).

To control RunTime System functioning, parallel program debugging and statistics

accumulation the parameters are used. DVMH system settings and methods to correct

parameters necessary for functioning are described in the document.

2 Glossary

The terms and abbreviations used in the document are described in this section.

2.1 Description of hardware computational systems

Computational cluster – a set of interconnected computational nodes (computers). The

cluster node can contain some specialized processor devices – accelerators in addition to

the central processor unit (CPU).

CPU, central processor unit – several universal multi-core processors with common

random access memory (RAM).

Accelerator – specialized processor device connected to CPU and oriented on high-

performance execution of some programs. If the accelerator has its own memory, the

central processor unit moves the program and required for it data from RAM of CPU to

random access memory of the accelerator to execute the program on the accelerator.

Computational device, calculator – CPU or an accelerator.

GPU - graphic processor, one of accelerator types.

CUDA device - graphic processor of NVIDIA Corporation.

Intel Xeon Phi coprocessor – specialized processor which can be used as CPU or as

accelerator.

Constraint:

The current version of DVM system allows to use as the accelerator only CUDA device,

and Intel Xeon Phi coprocessor - only as CPU.

2.2 The description of virtual computational systems where DVMH
program can be executed

Virtual multiprocessor system (or array of virtual processors) – the machine provided

to user DVMH program by hardware and basic system software. For distributed computer

an example of such machine is MPI machine. In this case the multiprocessor system is a

group of MPI processes created when the parallel program is launched. One or several MPI

processes can be mapped on the same node of hardware cluster. The number of processors

 4

of virtual multiprocessor system and its representation as multidimensional grid is specified

in command line when the program is launched.

In the FDVMH model virtual processor became heterogeneous – it consists of a virtual

host processor (MPI process is started on it and the program fragments out of regions are

executed on it), virtual multiprocessor (regions with OpenMP target architecture are

executed on it), and several virtual accelerators of different architectures. In this case the

virtual host processor and the virtual multiprocessor are mapped on CPU and work on

common RAM, but each virtual accelerator has its own memory and is mapped on the

separate hardware accelerator of the appropriate architecture.

3 DVMH model and different architectures

DVMH programming model and FDVMH language allow to develop parallel

programs for clusters which nodes contain the accelerators of the NVIDIA Corporation and

Intel Xeon Phi coprocessors in addition to the universal multi-core processors. The model

supports the usage of all listed architectures both separately, and simultaneously within one

program.

DVM [1] model was taken as a basis of DVMH model. The constructions for

organization of computations on clusters with accelerators and specifications of data

streams, for control of data movement between RAM of central processor and memories of

accelerators were added in DVM model.

The parallelism model is based on the special form of parallelism by data: one

program – multiple data streams. In the model the same program is executed on each virtual

processor, but each processor executes its own subset of statements according to data

distribution.

First, the programmer defines arrays (distributed data) and iterations of the loops,

that may be distributed between processors.

The distributed arrays are specified by data mapping directives (see sections 4.1.1

and 4.1.2), and parallel loops - by directives of computation distribution (see section 4.1.3).

The other variables (distributed by default) are mapped by one copy per each

processor (replicated data). The replicated variable must have the same value on each

processor except for reduction variables (see section 4.3.5) and private variables (see

section 4.2) in a parallel loop.

 Data distribution defines a set of local or own variables for each processor. The set

of own variables defines the rule of own computations: the processor assigns values only

to its own variables.

During the program execution the processor may need in values of as own as other

(remote) variables. All remote variables must be specified in directives of remote data

access (see section 4.3).

Then the programmer defines code fragments which can be executed on

accelerators. These fragments are called computational regions or simply regions.

 5

Program fragments outside regions are always executed on the central processor.

For each region data necessary for its execution (input, output, local) are specified.

Data movements between the central processor and accelerators are performed in

general automatically according to information about used by region data, contained in the

region description. To control data movements between accelerators and the central

processor special directives are provided (see section 4.5).

There are several levels of parallelism in DVMH programs:

 Distribution of data and computations on MPI processes. This level is set by

directives of distribution and redistribution of data and by specifications of parallel

subtasks and loops.

 Distribution of data and computation on computational devices at the entrance into

the computational region.

 Parallel processing within the certain computational device. This level appears at

entrance into the parallel loop inside the computational region and for parallel loops

outside the region in special mode that is set by an option - Opl (see Application 3).

4 Parallelization of Fortran-DVMH programs

Program parallelism is described in FDVMH language using the directives. Each

directive is specified as a special comment:

!DVM$ <DVMH-directive>

The formal syntax of directives and the rules of directive record in free and fixed

forms are given in Appendix 1. All examples in this document are written in the fixed

form.

Program parallelization in DVMH model can be separated into the following stages:

1. Distribution of data (arrays) and computations (parallel loops) on an array of virtual

processors.

2. Determining and specification of remote data.

3. Determining of regions for execution on accelerators.

4. Control of data movement between CPU memory and memories of accelerators.

4.1 Distribution of arrays and parallel loops

At the first stage DISTRIBUTE, ALIGN and PARALLEL directives are used. If

to consider these directives at abstract level, they set correspondence between points of

index (discrete) spaces of two objects. The index spaces of the following objects are used:

P – index space of virtual processor array. A user defines the array of virtual processors and

set it when launches the program.

Ai - index space of i-th data array.

 6

Lj - index space of j-th parallel loop. The parallel loop is considered as an array which

elements are loop iterations. The number of dimensions of the array is defined by quantity

of the loop headers.

Directives set correspondence between points (elements) of the following objects:

DISTRIBUTE: Ai  P. To each point (the virtual processor) P a subset of points (array

elements) of Ai is matched.

ALIGN: Ai1  Ai2. To each point (array element) of Ai2 the subset of points (array

elements) of Ai1 is matched.

PARALLEL: Lj  Ai. To each point (array element) of Ai the subset of points (loop

iterations) of Lj is matched.

Set of these directives defines a subset of elements of arrays and iterations of

parallel loops for each virtual processor.

Data and statements that aren't specified by these directives are automatically

distributed on each virtual processor (replicated data and not parallelizable computations).

4.1.1 Distribution of arrays. DISTRIBUTE and REDISTRIBUTE directives.

FDVMH language supports distribution by blocks (equal and non-equal) and

distribution via alignment.

Distribution of array A is described by the following directive

!DVM$ DISTRIBUTE A (f1…fk)

where fi - distribution format for i-th dimension:

fi = BLOCK - distribution by equal blocks

 = WGT_BLOCK (WB, NBL) - » distribution by blocks according to their

relative "weights"

 = * - non-distributed dimension

k – number of dimensions

If fi = BLOCK, the array dimension is distributed mainly by equal blocks. If the

number of the array elements (N) doesn't exceed number of processors (P), on each

processor either one array element is located, or no one. If the number of array elements

(N) is more than number of processors, the number of elements per processor is determined

by a formula:

[k * N / P] - [(k - 1) * N / P],

where: k – processor number, N – a number of elements of an array, P – number of

processors.

If fi = WGT_BLOCK(WB, NBL), dimension is distributed according to their relative

"weights". WB is a one-dimensional array of real numbers of NBL size.

For 1 i  NBL, WB(i) defines weight of i-th block. The blocks are distributed on P

processors with balancing of sums of block weights on each processor. The condition

http://www.translate.ru/dictionary/en-ru/dimension

 7

P  NBL

must be satisfied.

The processor weight is defined as a sum of weights of all blocks distributed on it.

The array dimension is distributed proportionally to the weights of processors.

The BLOCK format is a special case of the WGT_BLOCK(WB, P) format, where

WB(i) = 1 for 1 i  P and NBL = P.

If fi = *, the whole dimension (local dimension) is distributed on each processor.

The number of BLOCK and WGT_BLOCK(WB, NBL) formats defines number of

dimensions of virtual processor array. If we enumerate the BLOCK and

WGT_BLOCK(WB, P) formats as fb1,…,fbn, then dimension with fbi format is mapped on

i-th dimension of virtual processors array, and the number of blocks is defined by the size

of i-th dimension of virtual processor array. In this case at the program startup it is possible

to set any n-dimensional array of virtual processors.

Several arrays (A1, A2,…) can be distributed at the same mode by the single

directive of the form:

!DVM$ DISTRIBUTE (f1…fk) :: A1, A2,…

where fi - distribution format for i-th dimension.

In this case the arrays must have the same rank, but may have different sizes of

dimensions.

The array specified by DISTRIBUTE directive, can be redistributed by the

following directive:

!DVM$ REDISTRIBUTE A (f12…fk2)

REDISTRIBUTE directive can be applied only to arrays with DYNAMIC

specification:

!DVM$ DYNAMIC A

For redistributed array initial distribution may not be specified, it is so-called

postponed distribution. The DISTRIBUTE directive will have the form:

!DVM$ DISTRIBUTE :: A

in this case DYNAMIC specification is optional.

If the array with ALLOCATABLE attribute is specified in DISTRIBUTE directive,

the distribution is postponed until execution of ALLOCATE statement that allocates the

array in the memory.

REDISTRIBUTE directive for dynamically distributed array can be performed only

after ALLOCATE statement execution.

Example. Distribution by blocks.

!DVM DISTRIBUTE (BLOCK):: A,B,C

real A (12), B(11), C(5)

 8

At startup on four processors the distribution will be the following:

Processsor

A B C

R(1) 1 1 1

 2 2

 3

R(2) 4 3 2

 5 4

 6 5

R(3) 7 6 3

 8 7

 9 8

R(4) 10 9 4

 11 10 5

 12 11

Example. Distribution by weights of blocks.

 DOUBLE PRECISION WB(12)

 REAL A(12)

 !DVM$ DISTRIBUTE A (WGT_BLOCK(WB, 12))

 DATA WB / 2., 2.,1., 1., 1., 1., 1., 1., 1., 1., 2., 2. /

Processor A

R(1) 1

 2

 3

 4

R(2) 5

 6

 7

 8

R(3) 9

 10

R(4) 11

 9

 12

Distribution by the WGT_BLOCK format can be performed for any number of

processors in the range from 1 to NBL. For this example the size of processor array R can

be from 1 to 12.

Example. Distribution of dynamically allocated arrays.

 SUBROUTINE SP(K)

 REAL, ALLOCATABLE, DIMENSION (:) :: A

 !DVM$ DISTRIBUTE (BLOCK) :: A

 READ(*,*) N

 ! allocation and distribution of array A

 ALLOCATE (A(N))

 . . .

 END

4.1.2 Data localization. ALIGN and REALIGN directives.

Alignment of array A with the distributed array B brings in accordance to each

element of array A an element or section of array B. In case of distribution of array B the

array A will be distributed simultaneously. If element of array B is distributed on the

processor, the element of A, corresponding to element B via alignment, will be also

distributed on the same processor.

The method of distribution via alignment performs the following two functions.

1) Identical distribution of arrays of same shape to the same processor array does

not always guarantee that the correspondent elements will be located on the same

processor. It forces to specify remote access (see section 4.3) where it perhaps

isn't exist. Only alignment of corresponding elements of the arrays guarantees their

location on the same processor.

2) Several arrays can be aligned with the same array. Redistribution of the base array by

REDISTRIBUTE directive will cause corresponding redistribution of the array

group.

The main method of data localization (i.e. remote data decreasing) is joint

distribution of several arrays. Joint distribution of two arrays A and В is described by the

array_alignment diirective.

!DVM$ ALIGN A (a1… an) WITH B (b1… bm)
where:

ai - parameter of i-th dimension of aligned array A,

bj - parameter of j-th dimension of aligned array B,

n - number of dimensions of array A,

m - number of dimensions of array В.

This directive brings in accordance to each array B element some subset of elements

of array A. This subset of array A elements will be distributed on the same processor where

the corresponding element of array B will be located. Parameters of the aligned array A and

the basic array B can have the following form:

 10

ai = IDi bj = c*IDj+d

 = * = *

where:

IDi , IDj - identifiers

c, d - integer constants

Сonsider the semantics of these designations.

If ai = *, i-th dimension of array A is entirely distributed on each processor where at least

one element of array B is located (replication, local dimension).

If bj = *, execution of ALIGN directive doesn't depend on j-th dimension of array B

(collapse, i.e. dimension would not exist when correspondence is established).

If ai = IDi, always exists one and only one bj = c*IDj+d, where IDi=IDj. The equality

IDi=IDj means that i-th dimension of array A is bringing in correspondence to j-th

dimension of array B. The correspondence of elements is set by c*IDj+d function. The

indexes of the basic array must not exceed the limits of index space of the aligned array,

otherwise it is necessary to perform alignment with template (see section 4.3.1).

Examples of ALIGN directives and semantics.

!DVM$ ALIGN A(I) WITH B(2*I+1)
 To distribute the A(I) and B (2*I+1) elements on the same processor.

!DVM$ ALIGN A(I,J) WITH B(J,I)
 To distribute A (I, J) and B (J, I) elements on the same processor.

!DVM$ ALIGN A(I) WITH B(*, I)
To distribute A(I) element on those processors where at least one element of I-

th column B is located.

!DVM$ ALIGN A(I, *) WITH B(I)
 To distribute the I-th line of A and the B(I) element on the same processor, i.e.

to replicate the second dimension of array A.

Several arrays (A1, A2,…) can be aligned with the same array B in the same manner

by the single directive of the form:

!DVM$ ALIGN (a1… an) WITH B (b1… bm) :: A1, A2, …

In this case arrays A1, A2 … must have the same number of dimensions (n), but can

have different sizes of dimensions.

The parameters of alignment and/or basic array can be changed by the directive

!DVM$ REALIGN A (a1… an) WITH C (c1… ck)

The aligned array should be described as DYNAMIC.

Initial alignment may not be specified, this is so-called postponed alignment. The

ALIGN directive will have the form:

!DVM$ ALIGN :: A

in this case DYNAMIC specification is optional.

 11

If in ALIGN directive the variable with ALLOCATABLE attribute is specified as the

aligned array, the directive execution is postponed until execution of ALLOCATE

statement. The REALIGN directive can be executed only after execution of ALLOCATE

statement.

Example. Alignment of dynamically allocated arrays.

 SUBROUTINE SBP(N)

 REAL, ALLOCATABLE, DIMENSION (:,:) :: X, Y

 !DVM$ ALIGN Y(I, J) WITH X(I, J)

 !DVM$ DISTRIBUTE X (BLOCK , BLOCK)

 !DVM$ DYNAMIC Y

 . . .

 ALLOCATE(X(N,N))

 ALLOCATE(Y(N,N))

 . . .

 !DVM$ REALIGN Y(I, J) WITH X(J, I)

 . . .

 END

Note, that ALLOCATE statements can't be executed in reverse order.

4.1.3 Distribution of parallel loop iterations. PARALLEL directive.

The parallel loop in the DVMH model is considered as an array of the loop

iterations. Number of dimensions of such array is equal to the number of the parallel loop

headers. The size of each dimension is defined by parameters of the corresponding header

of the loop. For such representation to be correct, the following conditions must be

satisfied:

 the parallel loop headers must not be separated by other statements (tightly nested

loop);

 the parameters of the parallel loop headers must not be modified during the loop

execution (rectangular index space);

 the loop iteration must be indivisible object and it should be executed on one processor.

Therefore left parts of assignment statements of one loop iteration should be distributed

on same processor (according to the rule of own computations).

Distribution of a parallel loop iterations is performed by the following directive:

!DVM$ PARALLEL (I1 ,… In) ON A (e1,… em)

where:j - a variable (index) of j-th header of the parallel loop,

n - number of the loop headers,

A - array identifier,

m - number of the array dimensions,

ei=a* Ik+b, a, b – integer variables

 Ik – a variable (index) of k-th header of the loop.

This expression means the following:

 12

 k-th dimension (the loop header) of the array of the loop iterations is matched with

i-th dimension of data array,

 correspondence between loop iteration and array element is set by the linear

function of a* Ik+b.

PARALLEL directive matches each iteration of the parallel loop with some array

element. It means that the loop iteration will be executed on the processor where the

corresponding array element is located. The semantics of PARALLEL directive is similar

to semantics of ALIGN directive. The difference is that instead of aligned data array the

array of parallel loop iterations is used.

Example.
 !DVM$ PARALLEL (I, J) ON A(I, J)
 DO I = 1, N

 DO J = 1, M-1

 A(I,J) = …

 B(I,J) = …

 ENDDO

 ENDDO

For the left parts of assignment statements of one loop iteration to be distributed on

one processor, it is necessary to apply to the array B description the following directive:

!DVM$ ALIGN B(I,J) WITH A(I,J)

If it is impossible to locate the left parts of statements on the same processor, the

loop must be split on several loops for which the conditions of loop iteration array are

satisfied.

Example.

 !DVM$ PARALLEL (I) ON A(2*I)
 DO I = 1, N DO I = 1, N

 A(2*I) = . . . A(2*I) = . . .

 B(3*I) = . . . ENDDO

 ENDDO !DVM$ PARALLEL (I) ON B(3*I)
 DO I = 1, N

 B(3*I) = . . .

 ENDDO

The loop is split on 2 loops, each of them satisfies to condition of parallel loop.

The parallel loop must additionally satisfy to following conditions:

 distributed dimensions of arrays are indexed only by regular expressions of the form a*I

+ b, where I - is the loop index;

 left part of the assignment statement is a reference to the distributed array, reduction

variable (see section 4.3.5) or the variable described in the loop body;

 there are no DVMH-directives inside the loop body.

4.2 Private variables

A variable is called private if its usage is localized within one iteration of a loop.

 13

The distributed arrays can't be private variables. Value of the private variable isn't

defined at the beginning of the loop iteration and isn't used after the loop iteration, therefore

own copy of the private variable can be used in each iteration of the loop.

If private variables are used in a parallel loop, the additional PRIVATE

specification in PARALLEL directive is needed:

 !DVM$ PARALLEL (I, J) ON A(I, J) , PRIVATE (X)
 DO I = 1, N

 DO J = 1, N

 X = B(I,J) + C(I,J)

 A(I,J) = X

 ENDDO

 ENDDO

If several private variables are used in the loop, they should be listed after

PRIVATE keyword in parentheses through a comma.

4.3 Remote data. Their types and specifications.

Data calculated on one processor but used on the others, are called remote.

Detection of remote data is performed by means of assignment statement analysis.

The assignment statement is always executed on the processor where data of its left side are

located. If data in left and right sides of the assignment statement are located on the same

processor, there are no remote data for this statement. Otherwise it is necessary to define

the form and the size of remote data and to describe them by appropriate directives (see

below). Such analysis will be called data localization analysis.

The purpose of parallelization is maximum parallelism with remote data minimizing

(maximum of localization).

In the following sections we will use the program fragment

 !DVM$ DISTRIBUTE A (BLOCK)

 . . .

 !DVM$ PARALLEL (I) ON A (I)

 DO I =1,N

 A(I) = expr
 ENDDO

where expr – expresion.

Modifying expression expr, consider the main methods of data localization and

remote data specifications for one-dimensional arrays (one dimension of a

multidimensional array).

4.3.1 Data localization. Alignment with template.

Let

A(I) = B(I) + C(I)

If A(I), B (I) and C (I) are distributed on the same processor for every I, there are no

remote data for this statement. Data localization can be performed using ALIGN directives:

 14

!DVM$ ALIGN B(I,J) WITH A(I,J)

!DVM$ ALIGN C(I,J) WITH A(I,J)

Consider the statement

A(I) = B(I + d1) + C(I - d2)

where d1, d2 – positive constants.

It is impossible fully localize data for this statement, using array A, because of +d1

and -d2 offsets violate limits of index space of array A. Therefore it is necessary to perform

alignment with a template in following manner:

!DVM$ TEMPLATE TABC (N+d1+d2)

!DVM$ ALIGN B(I) WITH TABC(I)

!DVM$ ALIGN A(I) WITH TABC(I + d2)

!DVM$ ALIGN C(I) WITH TABC(I + d1+d2)

!DVM$ DISTRIBUTE TABC (BLOCK)

In this case A(I), B(I+d1) and C(I-d2) will be distributed on the same processor for

every I. The template TABC defines some index space which is an intermediary between

data array and the array of virtual processors. The template elements have no real location

in the memory. They specify processors the corresponding elements of data arrays should

be distributed on.

4.3.2 Remote data of SHADOW type

Let

A(I) = B(I - d1) + B(I + d2)

In this case full localization of data is impossible. Nevertheless it is necessary to

perform the partial localization of the data using the directive

!DVM$ ALIGN B(I) WITH A(I)

After this directive execution the remote data location is defined precisely. To

compute all A(I) on one processor d1 elements of array B from the processors with smaller

element indexes and d2 elements of array B from the processors with bigger indexes will be

used. Such data will be called remote data of SHADOW type (shadow edges).

To specify the size of shadow edges SHADOW directive is used:

!DVM$ SHADOW B(d1:d2)

For several arrays (A1, A2,…) with the same sizes of shadow edges following single

directive can be used

!DVM$ SHADOW (d1:d2) :: A1, A2, …

The size of shadow edges is equal 1 by default.

In each parallel loop where array B remote data of SHADOW type are used,

additional specification in PARALLEL directive is needed:

 15

!DVM$ PARALLEL (I) ON A (I), SHADOW_RENEW (B)

4.3.3 Remote data of ACROSS type

Let

A(I) = A(I - d1) + A(I + d2)

As in the previous section, it is necessary to describe the size of remote data by the

directive:

!DVM$ SHADOW A(d1:d2)

But in PARALLEL directive ACROSS specification is added:

!DVM$ PARALLEL (I) ON A (I), ACROSS (A(d1:d2))

Difference between ACROSS type data and SHADOW type data is in the

following: independent execution of loop iterations is impossible, since before calculating

A(I) it is necessary to calculate A(I-d1). In ACROSS specification all distributed arrays

with regular data dependency are listed.

4.3.4 Remote data of REMOTE type

Let

A(I) = C(5) + C(I + N)

where C - distributed array.

In this case the following REMOTE_ACCESS specification in PARALLEL

directive is needed:

 16

!DVM$ PARALLEL (I) ON A (I), REMOTE_ACCESS (C(5), C(I+N))

If there are the statements

A(I)=C(5)

 or

 A(I)=C(N)

outside a parallel loop, before the statements the directive

!DVM$ REMOTE_ACCESS (C(5))

or

!DVM$ REMOTE_ACCESS (C(N))

is needed correspondently.

4.3.5 Remote data of REDUCTION type

Let in a loop the statements

A(I) = B(I) + C(I)

S = S + A(I)

are calculated.

For the first statement it is necessary to localize data as in section 4.1.2. For the

second statement in PARALLEL directive REDUCTION specification is needed:

!DVM$ PARALLEL (I) ON A (I) , REDUCTION (SUM(S))

where:

SUM – name of summing reduction operation,

S – reduction variable.

Reduction operations are: SUM, PRODUCT, AND, OR, MAX, MIN, EQV, NEQV,

MAXLOC, MINLOC.

4.3.6 Multidimensional arrays

When localizing data by ALIGN directive for multidimensional arrays it is

necessary to specify indexes of the aligned array elements for all dimensions.

Regarding existence of remote data it is enough to analyze only distributed

dimensions of arrays. Local dimensions are fully distributed on each processor and there

are no remote data on them. Each distributed dimension which has remote data, should be

considered in remote data specification (see section 4.3).

4.4 Specification of regions for execution on accelerators

The computational region specifyes a part of the program (with one entrance and

one exit) for possible execution on one or several computational devices.

 17

The region is specifyed by the pair of directives marking the beginning and the end

of the region and has the following form:

!DVM$ REGION [specification-list]

< region inner >

!DVM$ END REGION

Region inner is a fragment of the program containing arbitrary quantity of parallel

loops, separated, perhaps, by sequential groups of statements. The region may be empty.

Specification-list in REGION directive contains, if necessary, an information about

the directions of data usage in the region: input, output, local.

The specifications follow the word REGION and are separated by commas. Data – variables, arrays,

subarrays are listed after the specification name in parentheses through a comma.

There are following specifications:

IN - input data: latest values of these data should be in the region;

OUT - output data: the values of specified variables are updated in the region

and may be used further;

LOCAL - local data: the values of specified variables are updated in the region, but

these modifications won't be used further;

INOUT - abbreviated notation of two specifications IN and OUT;

INLOCAL - abbreviated notation of two specifications IN and LOCAL.

The records IN (A, B) and IN(A),IN(B) are allowed.

Subarray sections are written through a comma, for example, IN (s(1:5,2:6)).

Composite specifications, for example, OUT (s(1:5)), OUT (s(7:10)) or IN (s(1:5)),

OUT (s(6:10)) and the crossed specifications, for example, OUT (s(1:6)), OUT (s(3:10)) or

even OUT (s(1:6)), OUT (s(3:5)) are allowed.

The conflicting specifications, such as OUT(v), LOCAL (v), aren't allowed.

For the variables used in a region, but not specified in specification-list, the

following rules are applied by default:

 all used arrays are considered to be fully used (subarrays aren't selected);

 IN attribute is assigned to any variable used for reading;

 INOUT attribute is assigned to any variable used for writing;

 INOUT attribute is assigned to any variable, whose direction of usage isn’t

determined;

 LOCAL and OUT attributes aren't assigned.

If only IN attribute is specifyed for a variable (OUT or LOCAL isn’t specifyed), it

means that there are no any writing in such variable in the region and it doesn't modifyed

during the region execution.

Example.

 18

!DVM$ REGION IN (B, C), OU T (A)

!DVM$ PARALLEL (I, J) ON A(I, J)
 DO I = 1, N

 DO J = 1, N

 A(I,J)= B(I,J) + C(I,J)

 ENDDO

 ENDDO

!DVM$ END REGION

DVMH arrays are distributed among calculators, undistributed data are replicated.

Iterations of parallel DVMH loops inside the region are shared between calculators

according to the rule of parallel loop mapping specifyed in the parallel loop directive.

Each statement of sequential group of statements is executed on all calculators,

except the case of distributed data modification - then the rule of own computation works.

Constraints:

 Nested regions aren't allowed.

 There should not be input-output operations in the region if it is executed on CUDA

device.

 There should not be ALLOCATE and DEALLOCATE statements in the region.

 there shouldn't be statements to exit from a region inside the region.

 Inside sequential group of statements there shouldn't be statements to exit from the

group.

 The statements of conditional and unconditional jump to bypass parallel loops are

forbidden in a region, all parallel loops should be executed.

4.5 Control of data movement between CPU memory and memory of
accelerators

The control of data movement outside computational regions between a random

access memory of CPU and memories of accelerators is specified by actualization

directives - GET_ACTUAL and ACTUAL.

GET_ACTUAL directive performs all necessary updates in order to the actual (i.e.

the newest) values of data in subarrays and scalars specified in the list were in CPU

memory. If there are no parameters in the directive all data in CPU memory become actual.

ACTUAL directive declares that the subarrays and scalars specified in the list have

the newest values in CPU memory. The values of specified variables and elements of arrays

located in memory of accelerators are considered outdated and if necessary will be updated

before use. If there are no parameters in the directive all data are considered actual only in

CPU memory.

The parameters of directives – the list of variables, arrays and subarrays - are

specified in parentheses through a comma.

It isn't recommended to use ACTUAL and GET_ACTUAL directives without

parameters because of increasing of error probability (ACTUAL), and also a danger of

unnecessary data movements (GET_ACTUAL).

 19

Example.

!DVM$ ACTUAL (B , C)

………………………………..

!DVM$ REGION IN (B , C), OUT (A)

!DVM$ PARALLEL (I, J) ON A(I, J)
 DO I = 1, N

 DO J = 1, N

 A(I,J)= B(I,J) + C(I,J)

 ENDDO

 ENDDO

!DVM$ END REGION

……………………………………………

!DVM$ GET_ACTUAL (A)

 print *, A

4.6 The distributed arrays in COMMON blocks and EQUIVALENCE
statements

The arrays, distributed by default, can be used in COMMON blocks and

EQUIVALENCE statements without restrictions.

The arrays, distributed by DISTRIBUTE and ALIGN directives, can't be used in

EQUIVALENCE statements. Moreover, these arrays can't be associated with other data

objects. Explicitly distributed arrays may be components of COMMON block under

following conditions:

 COMMON block must be described in main program unit.

 Each description of the COMMON block must have the same quantity of components,

and corresponding components - sequences of memory of the same size.

 If explicitly distributed array is the component of COMMON blocks, then the array

declarations in different program units must specify the same data type and the same

configuration. DISTRIBUTE and ALIGN directives for the array must have identical

parameters.

Example. Explicitly distributed array in COMMON block.

Declaration in the main program.

 PROGRAM MAIN

 !DVM$ DISTRIBUTE B (*, BLOCK)

 COMMON /COM1/ X, Y(12), B(12,30)

Declaration in subroutine. The error is another number of components.

 SUBROUTINE SUB1

 !DVM$ DISTRIBUTE B1 (*, BLOCK)

 COMMON /COM1/ X, Y(12), Z, B1(12,30)

Declaration in subroutine. The error is other distribution of the array.

 SUBROUTINE SUB2

 !DVM$ DISTRIBUTE B2 (BLOCK, BLOCK)

 20

 COMMON /COM1/ X, Y(12), B2(12,30)

Declaration in subroutine. The error is other configuration of the array.

 SUBROUTINE SUB3

 !DVM$ DISTRIBUTE B3 (*, BLOCK)

 COMMON /COM1/ X, Y(12), B(30,12)

Declaration in subroutine. There is no errors.

 SUBROUTINE SUB4

 !DVM$ DISTRIBUTE B4 (*, BLOCK)

 COMMON /COM1/ X, Y(12), B(12,30)

4.7 Procedures in parallel program

Procedure call inside parallel loop

The procedure called inside parallel loop must not have side effects and contain

exchanges between processors (purest procedure). As a consequence, the purest procedure

doesn't contain:

 input-output statements;

 FDVMH directives;

 assignment of values to COMMON blocks variables;

 variables from module program unit.

Procedure call outside parallel loop

If the actual argument is explicitly distributed array (DISTRIBUTE or ALIGN), it

should be passed without shape changing. It means, that the actual argument is the

reference to the array beginning, and the corresponding formal argument has the same

configuration.

The formal arguments

If the actual argument is a distributed array, then corresponding formal argument

must have explicit or inherited distribution.

Explicit distribution is described by DISTRIBUTE and ALIGN directives with the

following restriction: the formal argument can be aligned only with other formal argument.

Explicit distribution of the formal argument means that before the procedure call a user

must provide the distribution of the actual argument in exact correspondence with

distribution of the formal argument.

Inherited distribution of array C (the formal argument) is described by the directive:

!DVM$ INHERIT C

Inherited distribution means that the formal argument inherits distribution of the

actual argument for each procedure call. Inherited distribution doesn't require from a user to

distribute the actual argument in correspondence with the formal argument.

Local arrays

 21

In a procedure local arrays may be distributed by DISTRIBUTE and ALIGN

directives. The local array can be aligned with formal argument. DISTRIBUTE directive

distributes a local array on the processor subsystem the procedure was called on (current

subsystem).

For distributed local array with SAVE attribute DISTRIBUTE and ALIGN

directives have identical parameters in each procedure call.

Example. Distribution of local arrays and the formal arguments.

 SUBROUTINE DIST(A, B, C, N)

 DIMENSION A(N,N), B(N,N), C(N,N), X(N,N), Y(N,N)

 ! explicit distribution of the formal argument

 !DVM$ DISTRIBUTE A (*, BLOCK)

 ! aligned formal argument

 !DVM$ ALIGN B(I, J) WITH A(I, J)

 ! inherited distribution of formal argument

 !DVM$ INHERIT C

 ! aligning local array with formal argument

 !DVM$ ALIGN X(I, J) WITH C(I, J)

 ! distribution of local array

 !DVM$ DISTRIBUTE Y (*, BLOCK)

 . . .

 END

4.8 Input-output

The statements of Fortran77 standard are used for organization of data input/output

in FDVMH program.

FDVMH allows only restricted form of input/output statements for distributed

arrays:

 An input-output list must contain only one name of distributed array and can’t

contain other input-output items.

 Only «*» format is allowed in formatted input-output statements.

 A control information list may not contain the ERR, END and IOSTAT specifiers.

 Only replicated variables is allowed in control information list.

The statements of distributed array input/output cann’t be used in a parallel loop.

Input/output statements for replicated data have the following restrictions:

 The control information list should not contain ERR and END specifiers.

 Only the following simplified form of explicit loop is allowed:

 (A (i1, i2..., I), I = n1, n2)

when inputting replicated assumed-size array.

Input statement, INQUIRE statement, and also any other input-output statement

with IOSTAT controlling parameter may not be used in a parallel loop.

 22

FDVMH program performing unformated input/output of distributed arrays isn't in

general compatible with serial FORTRAN 77 program. The data written by one program

may not be read by other one, because of difference in record lengths.

5 DVMH program execution scheme

DVMH program execution can be considered as the execution of sequence of

computational regions and code fragments between them, that we will call outregion space.

The code in outregion space is executed on the central processor whereas computational

regions can be executed on heterogeneous computational devices. Both inside and outside

regions parallel loops and serial fragments of the program can exist.

DVMH program execution begins synchronously by all launched processes. For

execution of sequential fragments of the program one main sequential execution thread is

created for each process.

When entering the computational region each process independently performs

additional distribution of the data used by this computational region among computational

devices. At this stage dynamic planning to balance loading and minimize the time costs for

data movements connected with the data redistribution is performed.

6 Compilation, execution and debugging of DVMH programs

6.1 What is DVMH program?

The parallel program is the ordinary serial program, in which DVMH directives

specifying its parallel execution are inserted.

DVMH directives are written as special comments

!DVM$ < DVMH directive >

that in the serial program is considered as the comment.

DVMH program is one or several files with source codes in FDVMH language,

having extension fdv, f, for, f90, f95, f03. If the files have extensions f90, f95, f03, it is

considered that they are in the free form, otherwise using compilation option (– FI) it is

neccesary to specify that the record form is fixed. When compiling it is necessary to specify

option -f90 if the files have extension fdv, f, for, but are written in free form.

If there is module program unit among the files, it is nessesary to integrate the files

in the uniform program using INCLUDE.

If there is a lot of files, but there are no modules, then to combine the files it is

possible to use makefile or to list all the files in compilation line.

 23

6.2 DVM system tuning

To compile and launch DVMH program it is necessary to copy to the working

directory where the program is, the file of dvm commands start (dvm) from dvm_sys/user

directory of DVM system.

In this file environment variables that can be modifyed by the user are defined. The

environment variables for DVMH programs are described in Appendix 3.

Instructions how tune environment variables, compile and launch programs on

different platforms are available on DVM site.

6.3 Method of DVMH programs debugging

DVMH program debugging implies two different kinds of activity:

 functional debugging, its purpose is to achieve correctness of functional execution of

the program;

 debugging of performance, its purpose is to achieve required level of parallel program

performance.

It is recommended to debug DVMH programs on test data in the following sequence

of steps:

1. Serial execution and debugging using standard Fortran compiler and standard

debugging tools.

2. Functional debugging of the parallel program.

3. Debugging of the parallel program performance.

6.3.1 Serial execution and debugging using standard Fortran compiler and
standard debugging tools

DVMH directives are Fortran language comments for standard compilers therefore

DVMH program is processed by them as usual serial program. It allows to debug the

program as usual serial program (in the mode of DVMH directive ignoring) using ordinary

debugging tools.

6.3.2 Functional debugging of parallel program

Functional debugging of DVMH program is performed in the following sequence of

steps:

1. Compilation. Obtaining the ready-to-run program.

2. Dynamic control of DVMH directives.

3. Comparison of execution results on a cluster without accelerators.

4. Comparison of execution results in region on CPU and accelerators.

6.3.2.1 Compilation. Obtaining the ready-to-run program.

The command of conversion and compilation of DVMH program has the following

form:

http://dvm-system.org/

 24

dvm f < DVMH-program_name>

where:

dvm  prefix (name of DVMH commands startup file);

< DVMH-program_name >  name (with extension) of the file with source program

code. The file is searched only in the current directory;

Processing result: executable file <DVMH-program_name> in the current directory. If

the converter detected errors, the executed file isn't created.

6.3.2.2 Dynamic control of DVMH directives

Dynamic control allows to detect the errors of the following types:

1. Undeclared data dependency in a parallel loop.

2. Using non-initialized private variables inside or outside of a parallel loop.

3. Modification of read-only variables.

4. Use of reduction variables after asynchronous reduction start, but before its completion.

5. Undeclared access to non-local elements of distributed array.

6. Writing to shadow edges of distributed array.

7. Reading shadow elements of array before their update completion.

8. Modification of non-local element of the distributed array in sequential part of the

program.

9. Violation of a distributed array bounds.

10. Writing to remote access buffer.

For dynamic control a program should be compile at first in the mode of obtaining

debug version of parallel program.

The command to obtain debug parallel vesion has the form:

dvm fpdeb <DVMH-program_name >

Processing result: executable file < DVMH-program_name >_p.

The command to start debug parallel version of DVMH program performing dynamic

control of DVMH directives has the form:

dvm err < DVMH-program_name >

Processing result: errors, detected in DVM-directives (if they exist).

If any errors were detected error.dbg file containing list of all found errors is

created in the current directory. The short message about existence of errors appears after

output of task execution results.

The structure and the list of error messages of dynamic control see in Application

4.

Lack of dynamic control errors doesn't guarantee the correct operation of the

parallel program due to following reasons:

 dynamic control doesn't check correctness of the description of reduction operations;

 25

 the procedures called from DVMH-program, but written in other languages and not

dynamically controlled can be a source of errors;

 dynamic control doesn't check a correctness of a region execution on accelerators, and

also absence of OUT or LOCAL specifications for variables modifyed in the region;

 the tested sequential program can contain errors not appeared during sequential

execution, but these errors could occur during parallel execution.

Therefore program debugging should be continued.

6.3.2.3 Comparison of execution results on a cluster without accelerators

To search such errors the method of trace accumulation and comparing of sequential

and parallel execution of the program is used. It allows to localize the program point and

moment, when the results are beginning to differ.

The program is executed on the CPU, accelerators aren't used.

When tracing the information about all readings and modifications of variables,

entering each loop iteration, entering and exiting parallel loop is accumulated.

To perform comparison it is necessary to perform the following sequence of

commands.

1. The command to obtain debug parallel version:

dvm fpdeb < DVMH-program_name >

Processing result: the executable file < DVMH-program_name> _p.

2. The command to obtain debug serial version:

dvm fsdeb < DVMH-program_name >

Processing result: the executable file < DVMH-program_name > _s.

3. The command to start debug serial version of DVMH-program, accumulating reference

trace on one processor:

dvm trc < DVMH-program_name>

Processing result: the file 0.trd, containing accumulated trace. If trace accumulation errors

were detected – an error message after output of task execution results and error.trd file is

created in the current directory.

4. The command to start debug parallel version of DVMH programs comparing

computation results of the program execution on one processor in the special mode of

reduction operation checking with the accumulated earlier reference trace.

dvm red < DVMH-program_name >

Processing result: If the errors are detected – error message output after output of task

execution results and appearance of error.trd file in the current directory.

5. The command to start debug parallel version of DVMH program comparing computation

results of the program execution on several processors with previously accumulated

reference trace.

 26

dvm dif [N1 [N2 [N3 [N4]]]] < DVMH-program_name>

where N1, N2, N3, N4 - the sizes of a processor matrix (by default – 1 1 1 1).

Processing result: If the errors are detected – error message output after output of task

execution results and appearance of error.trd file in the current directory.

If no differences are detected in trace, it is possible to execute the program in

parallel with real data.

6. If differences are detected, but the error in program was not detected using reference

trace and diagnostics of trace comparison, the user can accumulate trace on each processor

starting debug parallel version of the program on the required processor matrix. The

following command is used for this purpose.

dvm ptrc [N1 [N2 [N3 [N4]]]] < DVMH-program_name >

where N1, N2, N3, N4 - the sizes of processor matrix (by default – 1 1 1 1).

Processing result: For each processor trace is accumulated in the separate file with names:

0.trd, 1.trd, 2.trd, etc. If errors are found the appropriate message is issued after output of

the task execution results.

The structure of trace accumulation files and the message list of result comparison

error see in Application 4.

Note. All steps of debugging described in sections 6.3.2.2 and 6.3.2.3 can be started by one

command:

dvm ftest [N1 [N2 [N3 [N4]]]] < DVMH-program_name >

6.3.2.4 Comparing of execution results in regions on CPU and accelerators

Comparison of execution results in regions on CPU and accelerators is a special

mode of DVMH program operation when all computations in regions are executed

simultaneously on CPU and GPU.

In this mode the output data obtained in region during execution on GPU are

compared with the data obtained in the region during execution on CPU with a given

degree of accuracy.

Such mechanism allows to detect and localize the errors which occur during

execution on accelerators.

If the mode of comparative debugging of the region is turned on the same iterations

of the same parallel loop will be executed twice – once on CPU and other – on GPU.

All output data of the computing region are included in comparison. Integer data are

compared on equality, and real numbers are compared with the given accuracy by absolute

and relative inaccuracy. If discrepancies were found the information about it is issued.

Further in the program the version of data obtained on CPU is used.

Such comparison is used to check a correctness of a region execution on

accelerators, and also absence of OUT or LOCAL specifications for variables that are

modifyed in the region.

 27

When region is executed on the accelerator the errors can arise for several reasons:

1. Incorrect parallelization not suitable for array-parallel execution in shared memory was

performed by programmer.

2. The programmer incorrectly specified private or reduction variables in a parallel loop.

3. Arithmetical operations or mathematical functions are executed on the accelerator with

the result different from result, obtained on CPU. It can occur due to command system

distinctions leading to different results (within the limits of precision of the rounding).

4. The programmer specified incorrect data actualization directives GET_ACTUAL and

ACTUAL owing to what processed data on CPU and the accelerator were different.

Turning on and use of comparative debugging mode doesn't require from the

programmer to make any changes in the program, and also again to compile it.

The program will be executed in the mode of comparative debugging if it is

launched by the command:

dvm cmph [N1 [N2 [N3 [N4]]]] < name of executable file of DVMH-program >

where N1, N2, N3, N4 - the sizes of processor matrix (by default – 1 1 1 1).

If errors were detected the information about them is issued in standard error output

stream or in a file. The name of the file can be specifyed in environment variable

DVMH_LOGFILE.

Accuracy of variable comparison can be changed, if to set values of environment

variables DVMH_COMPARE_FLOATS_EPS, DVMH_COMPARE_DOUBLES_EPS,

DVMH_COMPARE_LONGDOUBLES_EPS.

It is recommended to perform comparative debugging on test data.

6.3.3 Compilation and execution of DVMH programs on cluster with
accelerators

Compilation and execution of DVMH programs is performed using the following

commands:

dvm f <compilation options> <DVMH-program_name>

dvm run [N1 [N2 [N3 [N4]]]] < name of executable file of DVMH-program >

where N1, N2, N3, N4 - the sizes of processor matrix (by default – 1 1 1 1).

When DVMH-program is launched the rank and sizes of virtual processor matrix

determine the configuration and number of processes (N1*N2*N3*N4), where DVMH-

program will be executed in parallel.

Сompilation options are described in Appendix 3.

Instructions how to setup environment variables, to compile, to start programs on

different platforms are available on DVM site.

http://dvm-system.org/

 28

6.3.4 Debugging parallel program performance

To debug performance performance analyzer is used. It allows to obtain information

about main characteristics of the program performance (or its parts) on parallel system. The

performance of parallel program execution on multiprocessor computers with distributed

memory is determined by the following main factors:

 degree of program parallelism - a part of parallel calculations in total volume of

calculations;

 balance of processor loading during parallel calculations;

 time necessary for interprocessor communications;

 degree of overlapping of interprocessor communications and calculations.

6.3.4.1 Main characteristics of performance

Main characteristics and their components

 Efficiency coefficient (Parallelization efficiency) is ratio of productive time to total

processor time.

 Time of execution (Execution time) - the maximum value among times of execution

of the program on all used processors.

 The number of used processors (Processors).

 Total processor time (Total time) is production of the time of execution

(Execution_time) by the number of used processors (Processors).

 Productive time (Productive time) is the sum of three components - productive

processor time (CPU), input/output time (I/O) and productive system time (Sys).

 Lost time (Lost_time) - a difference between the total time of processor usage and

productive time. Components of lost time are insufficient parallelism, communications

and idle time.

 Insufficient parallelism (Insufficient par) and its components.

 Communications and all their components (Communication).

 Idle (Idle time) of a processor because of its insufficient loading.

 Potential losses because of disbalance (Load_Imbalance).

 Potential synchronization losses (Synchronization) in case of execution of collective

operations and all their components.

 Potential losses because of variation of times (Time_variation) because of execution

of collective operations and all their components.

 Overlapping time (Overlap) and its components. This characteristic reflects potential

reducing of communication expenditures due to overlapping of interprocessor

communications with computations.

Characteristics of program execution on each processor

 Lost time (Lost time) is the sum of insufficient parallelism losses (User Insufficient

par), system insufficient parallelism losses (Sys Insufficient par), communications

losses (Communication) and idle (Idle time).

 Insufficient parallelism losses (User insufficient par).

 System insufficient parallelism losses (Sys insufficient par).

 29

 Idle on the given processor idle (Idle time) is difference between maximal time of

interval execution (on any processor) and the time of interval execution on the given

processor.

 Total communication time (Communication).

 Real time of losses because of dissynchronization (Real synchronization).

 Potential time of losses because of dissynchronization (Synchronization).

 Potential time of losses because of time variation (Variation).

 Time of asynchronous operation overlapping (Overlap).

 Losses because of load imbalance (Load Imbalance) is difference between maximal

processor time (CPU + Sys) and the time on the given processor.

 Time of interval execution (Execution time).

 Productive processor time (User CPU time).

 Productive system time (Sys CPU time).

 Input/output time (I/O time).

 Number of processors used for interval (Processors).

 Communication times for all types of collective operations (Reduction, Shadow,

Remote access, Redistribution and I/O).

 Real dissynchronization losses for all types of collective operations.

 Potential dissynchronization losses for all types of collective operations.

 Potential time variation losses for all types of collective operations.

 Time of overlapping for all collective operations (Overlap).

Note 1. The last three characteristics are issued only if in start parameters

IsTimeVariation=1 parameter is set;

To obtain value of real losses because of dissynchronization it is necessary to set

IsSynchrTime=1 parameter.

Note 2. The performance analyzer outputs to the user the execution characteristic both for

all program, and on each processor.

6.3.4.2 Representation of program as a hierarchy of intervals. Execution with
statistics accumulation.

Program execution is considered as an interval of the highest level (zero level). This

interval can include several intervals on the next (first) level. Such intervals can be parallel

loops, sequential loops as well as any sequence of operations marked by user for which the

execution starts from the first statement and completes with the last statement. The intervals

of the first level can in turn include intervals of the second level etc.

All above characteristics are computed not only for the whole program but also for

each its interval. In FDVMH the interval is defined as follows:

!DVM$ INTERVAL [<integer expression>]

 <sequence of statements>

!DVM$ END INTERVAL

 30

For example, marking loop body as an interval and specify loop counter as integer

expression each loop iteration will be represented as separate interval. In the same manner

characteristics of even and odd loop iterations or characteristics of procedure execution

with given parameters can be obtained.

To accumulate statistics about DVMH program performance when it is launched on

multiprocessor computer or on workstation network the parameter Is_DVM_STAT (the

sign of statistics accumulation in the file usr.par) should be equal to 1.

After the program completion with statistics accumulation the statistics file with

name sts.gz+ (or sts, or <task name>.sts.gz+) should be created in the current directory. If

during data accumulation the errors were detected, the file can still be created and an error

message will be output on the screen or to a file. The list of messages is given in Appendix

5.

Constraint:

 Interval may not be inside the loop, it must to include the loop entirety.

6.3.4.3 Start of performance analyzer. Representation of task characteristics for
intervals.

To get time characteristics for intervals user should execute the following

command:

dvm pa <statistics file name> < file name with characteristics>

All characteristics are written in text form into specified file. For each interval the

following information is saved:

 name of file with source code of DVMH program and number of first statement of

interval (SOURCE, LINE);

 interval type – whole program, parallel loop (PAR), sequential loop (SEQ) or marked

by user sequence of statements (USER);

 interval level number (LEVEL);

 the number of entrances (and exits) in the interval (EXE_COUNT);

 value of expression defined when describing interval (EXPR);

 main execution characteristics and their components (Main characteristics);

 minimal, maximal and average program execution characteristics on every processor

(Comparative characteristics);

 program execution characteristics on every processor (Execution characteristics on

processors).

When characteristics are issued their components are placed in the same line (to the

right in brackets), or in the next line (to the right of symbols “*” or “-“).

The components of some characteristics connected with collective operation

execution are issued as columns of table where lines correspond to the type of collective

operation and columns correspond to characteristics. One of columns (Nop) of this table

contains a number of operations of every type, that are characteristics not depending on the

number of processors used for the program execution.

 31

Information about minimal, maximal and average values of such characteristics is

saved in the table in the same way. Some characteristics aren't issued at all if their values

are equal to zero.

6.3.4.4 Recommendations on characteristics analysis

The main criterion is efficiency coefficient of parallelization. If efficiency

coefficient is low, it is necessary to analyze lost time and its components.

At first it is necessary to evaluate three components of lost time for main interval (as

a rule, iterative loop in the program is selected as such interval). It is most probable that the

main share of lost time is the share of one of first two components (insufficient parallelism

or communications).

If insufficient parallelism is the reason, it is necessary to detect, on what sections it

is found – sequential or parallel ones. In the last case the reason may be very simple –

incorrect specification of processor matrix when the program is started or wrong data and

computation distribution. If insufficient parallelism is found on sequential sections, the

existence of the sequential loop executing large volume of computation is the reason of it

most likely. The removal of this reason may require much efforts.

If the main losses are due to communications it is necessary, first of all, to pay

attention to real losses because of dissynchronization (Real synchronization). If its value

is close to amount of communication losses, it is necessary to consider potential losses

because of imbalance (Load_Imbalance) as iust imbalance of parallel loop calculations is

the most probable cause of dissynchronization and great communication losses. If

imbalance value is much less than value of potential losses because of synchronization

(Synchronization), it is necessary to pay attention to value of potential losses because of

times variation (Time_variation) for collective operations. If dyssynchronization isn't a

consequence of time variation of completion of collective operations, it may be caused by

imbalance of some parallel loops which in the considered interval of the program execution

may be compensated mutually. So it makes sense to consider imbalance characteristics in

intervals of lower level.

The second probable cause of great dissynchronization losses may be processor

dissynchronization that can occur due to input/output operations starts. This happens

because the main job (operation system input/output function calls) is executed on

input/output processor while the rest of processors are waiting for data from I/O processor

or information about collective operation completion. This cause can be easily revealed if

user considers the corresponding communication component – losses because of

input/output communications.

Large number of reduction operations or operations loading data from other

processors (renewing shadow edges or remote access) may be also the main cause of

communication losses. In this case user should check specifications of remote data.

Existence of excess specifications is one of the causes of losses because of

communications.

There is another approach for characteristic analysis when first, efficiency

coefficients and lost time in first level intervals are analyzed and then they are analyzed in

second level intervals etc. As a result a critical fragment of the program will be found. It is

 32

necessary to take into considerations that interval dissynchronization losses and interval

idle losses may be caused by not only imbalance and time variation on this interval but by

imbalance and time variation on other previously executed intervals.

Note. As upon transition from sequential execution of the program to its parallel

execution on one processor efficiency losses are possible, it is recommended to compile the

sequential program with calls of information accumulation functions to estimate

performance and to run obtained sequential program on one processor. For this purpose it is

necessary to execute following compilation command:

dvm f -s < DVMH program name>

and command to start the program:

dvm run 1 < DVMH program name >

Then it is necessary to compare the obtained statistics with statistics of parallel

execution on one processor.

7 References

1. DVM system[Electronic resource] - : [web-site] – DVM

http://dvm-system.org/

8 The example of Jacobi program in the Fortran-DVMH language

We will illustrate of Fortan DVMH capabilities on the example of Jacobi algorithm

program.

 PROGRAM JAC

 PARAMETER (L=8, ITMAX=10)

 REAL A(L,L), EPS, MAXEPS, B(L,L)

!DVM$ DISTRIBUTE (BLOCK, BLOCK) :: A

!DVM$ ALIGN B(I,J) WITH A(I,J)

! arrays A and B with block distribution

 PRINT *, '********** TEST_JACOBI **********'

 MAXEPS = 0.5E – 7

!DVM$ region

!DVM$ PARALLEL (J,I) ON A(I, J)

! nest of two parallel loops, iteration (i,j) will be executed on

! processor, which is owner of element A(i,j)

 DO J = 1, L

 DO I = 1, L

 A(I, J) = 0.

 IF(I.EQ.1 .OR. J.EQ.1 .OR. I.EQ.L .OR. J.EQ.L) THEN

 B(I, J) = 0.

 ELSE

http://dvm-system.org/

 33

 B(I, J) = (1. + I + J)

 ENDIF

 END DO

 END DO

 !DVM$ end region
 DO IT = 1, ITMAX

 EPS = 0.

!DVM$ actual(EPS)

!DVM$ region

!DVM$ PARALLEL (J, I) ON A(I, J), REDUCTION (MAX(EPS))

! variable EPS is used for calculation of maximum value

 DO J = 2, L-1

 DO I = 2, L-1

 EPS = MAX (EPS, ABS(B(I, J) - A(I, J)))

 A(I, J) = B(I, J)

 END DO

 END DO

!DVM$ PARALLEL (J, I) ON B(I, J), SHADOW_RENEW (A)

! Copying shadow elements of array A from

! neighbouring processors before loop execution

 DO J = 2, L-1

 DO I = 2, L-1

 B(I, J) = (A(I-1, J) + A(I, J-1) + A(I+1, J)+

 * A(I, J+1)) / 4

 END DO

 END DO

!DVM$ end region

!DVM$ get_actual(EPS)

 PRINT 200, IT, EPS

200 FORMAT(' IT = ',I4, ' EPS = ', E14.7)

 IF (EPS . LT . MAXEPS) EXIT

 END DO

 !DVM$ get_actual(B)

 OPEN(3,FILE='JAC.DAT',FORM='FORMATTED', STATUS='UNKNOWN')

 WRITE (3,*) B

 CLOSE (3)

 END

As a result of the directive execution

!DVM$ DISTRIBUTE (BLOCK, BLOCK) :: A

the array A will be distributed among calculators. The quantity and type of used calculators

is set using environment variables and command line options when program is launched.

Directive

!DVM$ ALIGN B(I,J) WITH A(I,J)

specifyed joint distribution of two arrays A and B. The array B elements will be distributed

on the same calculator where the corresponding elements of array A will be located.

Directive

 34

!DVM$ PARALLEL (J,I) ON A(I,J)

specifyes the distribution of computations. The loop iterations will be executed on that

calculator where the corresponding elements of array A are located.

Specification REDUCTION (MAX(EPS)) organizes effective execution of

reduction operation - global operation with data located on different calculators (maximum

value finding).

Specification SHADOW_RENEW (A) indicates the need of remote data (shadow

edges) swapping from other calculators before the loop execution. As there are no any

additional specifications in REGION directives, the compiler automatically defines the

directions of variable use - as INOUT (A, B,EPS).

When executing the first computing region (initialization loop) necessary memory

will be allocated for the distributed parts of arrays A and B on accelerators.

When entering to the second computing region (in iterative loop) check is carried

out, whether there are actual representatives for arrays A and B on the calculator. As such

representatives are already present, no additional operations of actual data copying to

calculators are performed.

When exiting from the computing region data in the host memory isn't updated.

Before the array output in a file, it is required to copy last modifications of the array B from

calculator memory using the directive GET_ACTUAL (B).

Annex 1. Syntax of FDVMH directives

The syntax of FDVMH directives is described by the following Backus-Naur form:

is is by definition

or an alternative construct

[] encloses optional construct

[]… encloses an optionally repeated construct which may occur zero or

 more times

x-list x [, x]…

Syntax of directive

directive-line

is !DVM$ dvm-directive

dvm-directive is specification-directive

 or executable-directive

specification-directive is align-directive

 or distribute-directive

 or template-directive

 or shadow-directive

or inherit-directive

 35

executable-directive is realign-directive

 or redistribute-directive

 or parallel-directive

 or remote-access-directive

 or region-begin-directive

 or region-end-directive

 or get-actual-directive

 or actual-directive

 or host-section-begin-directive

 or host-section-end-directive

Constraints:

 A specification-directives may appear only in specification section.

 An executable-directive may appear among executable statements.

 Any expression, included in specification directive, must be the specification expression.
A specification expression is an expression where each primary must be one of the

following forms:

1) constant,

2) a variable which is the formal argument,

3) a variable from COMMON block,
4) reference to intrinsic function where each argument is a specification expression,

5) a specification expression enclosed in parentheses.

No statements may be interspersed within a continued directive. A directive-line can’t appear

within a continued statement. An example of a directive with continuation in free form follows.

Note that column 6 must be blank, except when signifying continuation.

!DVM$ ALIGN SPACE1(I, J, K)

!DVM$* WITH SPACE(J , K, I)

Example of directive with continuation in free form:

!DVM$ ALIGN SPACE1(I, J, K) &

!DVM$ WITH SPACE(J , K, I)

The following example shows to universal directive with continuation i.e. satisfying to

rules as the free, as the fixed form:

!DVM$ ALIGN SPACE1(I, J, K) &

!DVM$& WITH SPACE(J , K, I)

Note that the sign & in the first line is in 73 position of the line.

DISTRIBUTE and REDISTRIBUTE directives

distribute-directive is dist-action distributee dist-directive-stuff

 or dist-action [dist-directive-stuff] :: distributee-list

dist-action is DISTRIBUTE

 or REDISTRIBUTE

dist-directive-stuff is dist-format-list

Distribute is array-name

 36

or template-name

dist-format is BLOCK
 or WGT_BLOCK (block-weight-array , nblock)
 or *

Constraint:

 A length of dist-format-list must be equal to the array rank. That is, distribution format

must be specified for every array dimension.

ALIGN and REALIGN directives

align-directive is align-action alignee align-directive-stuff

 or align-action [align-directive-stuff] :: alignee-list

align-action is ALIGN

 or REALIGN

align-directive-stuff is (align-source-list) align-with-clause

Alignee is array-name

align-source is *
 or align-dummy

align-dummy is scalar-int-variable

align-with-clause is WITH align-spec

align-spec is align-target (align-subscript-list)

align-target is array-name

 or template-name

align-subscript is int-expr

 or align-dummy-use

 or *

align-dummy-use is [primary-expr *] align-dummy [add-op primary-expr]

primary-expr is int-constant

 or int-variable

 or (int-expr)

add-op is +
 or -

Constraint:

 A length of align-source-list must be equal to the rank of aligned array.

 37

TEMPLATE directive

template-directive is TEMPLATE template-decl-list

template-decl is template-name [(explicit-shape-spec-list)]

Distribution of loop iterations. PARALLEL directive.

parallel-directive is PARALLEL (do-variable-list)

 ON iteration-align-spec

 [, private-clause]

[, reduction-clause]

[, shadow-renew-clause]

[, remote-access-clause] [, across-clause]

iteration-align-spec is align-target (iteration-align-subscript-list)

iteration-align-subscript is int-expr

 or do-variable-use

 or *

do-variable-use is [primary-expr *] do-variable

 [add-op primary-expr]

Private variables. PRIVATE clause.

private-clause is PRIVATE (private_variable-list)

private_variable is array-name

 or scalar

Reduction operations and variables. REDUCTION clause.

reduction-clause is REDUCTION (reduction-op-list)

reduction-op is reduction-op-name (reduction-variable)

 or reduction-loc-name (reduction-variable ,

 location-variable, int-expr)

reduction-variable is array-name

 or scalar-variable-name

location-variable is array-name

reduction-op-name is SUM
 or PRODUCT
 or MAX
 or MIN
 or AND
 or OR
 or EQV

 38

 or NEQV
reduction-loc-name is MAXLOC

or MINLOC

Constraints:

 Distributed arrays can’t be used as reduction variables.

 Reduction variables are calculated and used only in statements of a certain type: the

reduction statements.

Specification of array with shadow edges

shadow-directive is SHADOW dist-array (shadow-edge-list)

 or SHADOW (shadow-edge-list) :: dist-array-list

dist-array is array-name

shadow-edge is width

 or low-width : high-width

Width is int-expr

low-width is int-expr

high-width is int-expr

Constraints:

 The size of left shadow edge (low-width), and size of right shadow edge (high-width)

must be integer constant specification expression with value greater than or equal to 0.

 A shadow edge specification of width is equivalent to shadow edge of width : width.

 By default distributed array has a shadow edge width of 1 on both sides of each

distributed dimension.

SHADOW_RENEW clause

shadow-renew-clause
is SHADOW_RENEW (renewee-list)

renewee is dist-array-name [(shadow-edge-list)

Constraints:

 Width of the shadow edges filled by values must not exceed the maximal width

specified in SHADOW directive.

 If shadow edge widths are not specified, then the maximal widths are used.

AСROSS clause

across-clause is ACROSS (dependent-array-list)

dependent-array is dist-array-name (dependence-list)

 39

dependence is flow-dep-length : anti-dep-length

flow-dep-length is int-constant

anti-dep-length is int-constant

Constraint:

 In each array reference, data dependence may appear only in one distributed dimension.

REMOTE_ACCESS directive

remote-access-directive is REMOTE_ACCESS

 (regular-reference-list)

regular-reference is dist-array-name [(regular-subscript-list)]

regular-subscript is int-expr

 or do-variable-use

 or :

remote-access-clause is remote-access-directive

stride is int-expr

REGION directive

region-begin-directive is REGION [region-clause-list]

region-clause is in-out-local-clause

in-out-local-clause is IN (in-out-local-variable-list)

 or OUT (in-out-local-variable-list)

 or LOCAL (in-out-local-variable-list)

 or INOUT (in-out-local-variable-list)

 or INLOCAL (in-out-local-variable-list)

in-out-local-variable is array-name

 or array-name(subarray-subscript-list)

 or scalar-variable-name

subarray-subscript is int-expr

 or [int-expr] : [int-expr]

 40

region-end-directive is END REGION

GET_ACTUAL and ACTUAL directives

get-actual-directive is GET_ACTUAL([actual-variable-list])

actual-directive is ACTUAL([actual-variable-list])

actual-variable is array-name

 or array-name(subarray-subscript -list)

 or scalar-variable-name

INHERIT directive

inherit-directive is INHERIT dummy-array-name-list

Annex 2. Environment variables for DVMH-programs

A user can to modify environment variables which are defined in dvm startup file.

DVMH_NUM_CUDAS - a number of CUDA devices for use by one process. If the

variable isn't set, its optimal value is defined by RunTime System. RunTime System

provides effective usage of all resources of a node. Optimal value depends on a number of

devices and a number of launched processes on the node. The value of

DVMH_NUM_CUDAS variable can't exceed physically available quantity of accelerators.

DVMH_NUM_THREADS – a number of the threads operating at CPU. If the variable

isn't set, its optimal value is defined by RunTime System. RunTime System provides

effective usage of all resources of a node. Optimal value depends on a number of devices

on the node, a number of launched processes on the node and a number of CUDA devices

(DVMH_NUM_CUDAS) to use by one process.. The value of

DVMH_NUM_THREADS variable can be any positive number.

DVMH_LOGFILE - a log file name. The file name is set in quotes, it is possible to use

construction %d (for example, ’dvmh_%d.log’), in this case the log of each MPI process

will be in separate file. If the variable isn't set, the standard error output stream is used.

DVMH_LOGLEVEL - detail level of log file. It is set as integer decimal number. There

are the following levels:

0 – errors of fatal err level are output,

1 - err,

2 - warning,

3 - info,

4 - debug,

5 - trace.

 41

Negative value is equated to zero. The value more than 5 is equated to 5. If the variable isn't

set, level 1 - err is set.

DVMH_PPN – a number of processes per a node. It determines distribution of

computational resources by processes — everyone is given an identical portion from

computational resources of the node. If the variable isn't set, it is equated to one (each

process uses all resources of a node).

DVMH_COMPARE_FLOATS_EPS - the accuracy of comparing of variables with

floating point of single precision on the relative and absolute inaccuracy in case of

comparative debugging. By default it is equal FLT_EPSILON*1000, where

FLT_EPSILON is minimum positive x such that 1.0+x=1.0.

DVMH_COMPARE_DOUBLES_EPS - the accuracy of comparing of variables with a

floating point of double precision on the relative and absolute inaccuracy in case of

comparative debugging. By default it is equal to DBL_EPSILON*10000, where

DBL_EPSILON is minimum positive x such that 1.0+x=1.0.

DVMH_COMPARE_LONGDOUBLES_EPS - the comparing accuracy of variables with

floating point of long double precision on the relative and absolute inaccuracy in case of

comparative debugging. By default LDBL_EPSILON*100000, where LDBL_EPSILON –

minimum positive x such that 1.0+x=1.0.

DVMH_CPU_PERF - the relative productivity of CPU (summary of all cores of the

CPU), it is used for job distribution in the planning mode 1. It is equal 1 by default.

DVMH_CUDAS_PERF - the relative productivity of GPU, it is set by the looped-back list

of real numbers through a space or a comma. It is equal 1 by default.

Annex 3. Compilation options for DVMH programs

-noH - a mode of DVMH directive ignoring.

-f90,-FR - specifying the free form of record of source FORTRAN codes and

FDVMH directives. If files have extension f90, f95, f03, it is considered

that they are in the free form.

-FI - specifying the fixed form of record of source FORTRAN codes and

FDVMH directives.

-autoTfm - the mode of an array dynamic reordering (the mode of dimension

reodering of the array for optimization of GPU memory access).

-Opl - Parallel loops out of regions are executed on a host processor, as well as

the loops inside regions. In this mode descriptions of privacy for loops out

of regions are necessary.

-gpuO1 - optimization of private variable usage for often used array elements which

are mapped on registers by the compiler.

-noCuda - compilation process control – the compiler doesn't prepare execution of

regions on CUDA devices.

 42

-collapse<N> - compilation mode when for each parallel loop if it is executed on CPU the

COLLAPSE (N) specification is added to OpenMP the directive.

-mmic - program compilation for execution on the Intel Xeon Phi coprocessor.

If DVMH program is compiled with option –noH DVMH directives are ignored,

and the DVMH program is transformed into the DVM program.

Usage of optimization options (– autoTfm, - Opl, – gpuO1) can promote the

increase of the program performance.

The optimization option -collapse<N> can optimize the program execution on Xeon

Phi.

Annex 4. Diagnostics messages of DVMH debugger

The common format of error messages of dynamic debugger:

(<process number>)<context> File: <file>, Line: <line> (<count> times)<error message>

where:

<process number>  number of processor, where error occurred. It is reported only if a

program is executed on several processors.

<context>  context, where the error occurred. It can be one of the following

forms:

 sequential branch  the error occurred in sequential part of

the program;

 Loop(No(N1),

Iter(I1,I2,…)), …,

Loop(No(Nm),

Iter(I1,I2,…))

 the error occurred when m-

dimensional loop was executed.

<file>  name of the file, where the error occurred.

<line>  line number.

<count>  a number of given error repetitions in the given context. It is output

when all detected errors are reported.

<error message>  error description message.

1. Dynamical control

Error message Description

Writing to read-only variable<var> Writing to read-only variable was detected.

Using non-initialized private variable

<var>

Access to non-initialized variable was detected.

Using non-initialized element <elem> Access to non-initialized distributed array

element was detected.

Using variable <var> before

asynchronous reduction competed

Access to reduction variable before reduction

operation completion.

 43

Access to non-local element <elem> Access to non-local element of distributed

array.

Writing to shadow element <elem> of

array

Writing to shadow element of array.

Shadow element <elem> was not updated Access to shadow elements before completion

of shadow edge renewing operation.

Data dependence in loop due to access to

element <elem>

Data dependence in parallel loop was detected.

Using shadow element <elem> before

asynchronous shadow renew competed

Usage of shadow element <elem> of

distributed array during shadow edge renewing

operation execution.

Writing to remote data buffer <var> Writing to remote data buffer <var>.

Write to remote element <elem> in

sequential branch

Writing to distributed array element <elem> in

sequential branch of the program without own

computation specification.

Reading remote element <elem> in

sequential branch

Using not local element <elem> of distributed

array in sequensial branch of the program.

WAIT for reduction without START Waiting for reduction completion is issued

without the reduction start.

Using an element outside of array limits:

<elem>

Access to array element beyond its limits.

START for reduction without WAIT Absence of waiting for asynchronous reduction

completion operation for corresponding

operation of asynchronous reduction start.

Reduction operation was not started Reduction variable is specified, but

corresponding computation of reduction

operation was never started.

2. Trace accumulation and comparison

Error message Description

Bad file structure Trace file structure is incorrect.

Undefined keyword Unknown keyword appears in trace file.

Bad command syntax Wrong structure of trace record.

Can't open a file <file name> Specified file can’t be opened.

Trace file <file name> is empty Specified trace file is empty.

Bad trace structure (missing current

program construct)

Trace file structure is incorrect. Record of

executable construct beginning is missing.

No current program construct Record of executable construct beginning is

missing.

Unexpected task or iteration of loop There is no record about given iteration or task

execution in reference trace.

Double execution of task or

iteration, No = <iter no>

Repeated execution of the same iteration or task.

Unexpected execution of program

construct

There is no record about given loop or task

execution beginning in reference trace.

 44

Abnormal loop exit Loop end doesn't correspond to the record in

reference trace.

Unexpected use of variable There is no given variable usage record in reference

trace.

Unexpected trace record There is no given event performance record in

reference trace.

Different <type> values: <standard

value> != <current value>

Variable value differs from the variable value in

reference trace.

Different <type> values of reduction

variable: <standard value> !=

<current value>

Result value of reduction computation differs from

the value in reference trace.

3. Structure of trace configuration file

Trace size = <size of full trace file in bytes>

String count = <a number of lines in full trace file>

SL, PL

 or TR

<construct number> (<number of surrounding construct>) [<construct rank>]

{<file name>, <line number>} = <trace accumulation level>,

(<dimension>:<first iteration>, < last iteration >, <iteration step>)

 # Trace size = <construct trace size in bytes for given construction for specified

trace level>
 # String count = <number of construct trace lines for specified trace level>
 # Count of traced iterations = <number of traced loop iterations or tasks>

EL: <construct number>

.

SL, PL or

TR

<construct number> (<number of surrounding construct>) [<construct rank>]

{<file name>, <line number>} = <trace accumulation level>,

(<dimension>:<first iteration>, < last iteration >, <iteration step>)

 # Trace size = <construct trace size in bytes for given construction for specified

trace level>
 # String count = <number of construct trace lines for specified trace level>
 # Count of traced iterations = <number of traced loop iterations or tasks>

EL: <construct number>

4. Execution trace structure

When executions are traced, accumulated trace information consists of two parts:

 trace header;

 trace body (may be omitted).

The header exists in trace even if the trace accumulation is disabled for whole

program. Its structure looks like the structure of trace configuration loop, but without

calculated values of trace size for whole program and for loops:

 45

MODE = <accumulation trace level for whole program>,

SL, PL or

TR

<construct number> (<number of surrounding construct>) [<construct rank>]

{<file name>, <line number>} = <trace accumulation level>,

(<dimension>:<first iteration>, < last iteration >, <iteration step>)

EL: <construct number>

.

SL, PL or

TR

<construct number> (<number of surrounding construct>) [<construct rank>]

{<file name>, <line number>} = <trace accumulation level>,

(<dimension>:<first iteration>, < last iteration >, <iteration step>)

EL: <construct number>

Trace body is absent, when trace accumulation is disabled for whole program.

Otherwise trace body consists of a lot of records of the following types:

 Reading variable.

RD: [<variable type>] <variable name> = <value>; {<file name>, <line number>}

 Referring to variable (before expression computation).

BW: [<variable type>] <variable name>; {<file name>, <line number>}

 Result of assigning value to variable.

AW: [<variable type>] <variable name> = <value>; {<file name>, <line number>}

 Reading reduction variable.
RV_RD: [<variable type>] <variable name> = <value>; {<file name>, <line number>}

 Referring to reduction variable (before expression computation).

RV_BW: [<variable type>] <variable name>; {<file name>, <line number>}

 Result of assigning value to reduction variable.

RV_AW: [<variable type>] <variable name> = <value>; {<file name>, <line number>}

 Result of reduction computation.

RV: [<variable type>] <value>; {<file name>, <line number>}

 Skipping a group of statements when referring an element of distributed array in

a sequential branch of the program.

SKP: {<file name>, <line number>}

 Parallel loop beginning.

PL: <loop number> (<parent construct number or empty>) [<loop rank>] = <trace

level: FULL, MODIFY, MINIMAL, NONE>, (<traced iteration range (can be

absent)>); {<file name>, <line number>}

 Sequential loop beginning.

SL: <loop number> (<parent construct number or empty>) [<loop rank>] = <trace

level: FULL, MODIFY, MINIMAL, NONE>, (<traced iteration range (can be

absent)>); {<file name>, <line number>}

 Task region beginning.

TR: <region number> (<parent construct number or empty>) [region rank>] = <trace

level: FULL, MODIFY, MINIMAL, NONE>, (<traced task range>); {<file name>,

<line number>}

 Beginning of iteration (put in trace file only when the most nested loop iteration is

executed) or parallel task.

 46

IT: <absolute iteration index (calculated from all values of all iteration variables) or task

number>, (<iteration variable value>,<iteration variable value>,…).

 End of parallel loop or task region execution.

EL: <construct number>; {<file name>, <line number>}

Annex 5. Error messages of statistics accumulation

Statistics: not enough memory for interval, data were not wrote to the file,

Statistics: number of ends of interval > number of begins of interval, data were not

wrote to the file,

Statistics: end of interval nline = <N>, name = <name>, no end nline = <N> name

=<name>, data were not wrote to the file,

Statistics: StatBufLength=<length>, increase buffer's size by <N> bytes, data were not

wrote to the file,

Statistics: StatBufLength=<length>, not enough memory for times of collective

operations, increase buffer's size by <N> bytes, only part of times of collective

operations and all intervals were wrote to the file.

Statistics warning :used return or goto, times may be incorrect

